The dorsal anterior cingulate cortex (dACC) is proposed to facilitate learning by signaling mismatches between the expected outcome of decisions and the actual outcomes in the form of prediction errors. The dACC is also proposed to discriminate outcome valence-whether a result has positive (either expected or desirable) or negative (either unexpected or undesirable) value. However, direct electrophysiological recordings from human dACC to validate these separate, but integrated, dimensions have not been previously performed.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
November 2016
Individuals differ in their awareness of afferent information from within their bodies, which is typically assessed by a heartbeat perception measure of 'interoceptive accuracy' (IAcc). Neural and behavioural correlates of this trait have been investigated, but a theoretical explanation has yet to be presented. Building on recent models that describe interoception within the free energy/predictive coding framework, this paper applies similar principles to IAcc, proposing that individual differences in IAcc depend on 'precision' in interoceptive systems, i.
View Article and Find Full Text PDFApathy is a debilitating but poorly understood disorder characterized by a reduction in motivation. As well as being associated with several brain disorders, apathy is also prevalent in varying degrees in healthy people. Whilst many tools have been developed to assess levels of apathy in clinical disorders, surprisingly there are no measures of apathy suitable for healthy people.
View Article and Find Full Text PDFSocial deficits are a core symptom of autism spectrum disorder; however, the perturbed neural mechanisms underpinning these deficits remain unclear. It has been suggested that social prediction errors-coding discrepancies between the predicted and actual outcome of another's decisions-might play a crucial role in processing social information. While the gyral surface of the anterior cingulate cortex signalled social prediction errors in typically developing individuals, this crucial social signal was altered in individuals with autism spectrum disorder.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2016
Reinforcement learning theory powerfully characterizes how we learn to benefit ourselves. In this theory, prediction errors-the difference between a predicted and actual outcome of a choice-drive learning. However, we do not operate in a social vacuum.
View Article and Find Full Text PDFThe anterior cingulate cortex (ACC) is implicated in a broad range of behaviors and cognitive processes, but it has been unclear what contribution, if any, the ACC makes to social behavior. We argue that anatomical and functional evidence suggests that a specific sub-region of ACC-in the gyrus (ACCg)-plays a crucial role in processing social information. We propose that the computational properties of the ACCg support a contribution to social cognition by estimating how motivated other individuals are and dynamically updating those estimates when further evidence suggests they have been erroneous.
View Article and Find Full Text PDFMotivation is underpinned by cost-benefit valuations where costs-such as physical effort or outcome risk-are subjectively weighed against available rewards. However, in many environments risks pertain not to the variance of outcomes, but to variance in the possible levels of effort required to obtain rewards (effort risks). Moreover, motivation is often guided by the extent to which cognitive-not physical-effort devalues rewards (effort discounting).
View Article and Find Full Text PDFUnlabelled: Empathy--the capacity to understand and resonate with the experiences of others--can depend on the ability to predict when others are likely to receive rewards. However, although a plethora of research has examined the neural basis of predictions about the likelihood of receiving rewards ourselves, very little is known about the mechanisms that underpin variability in vicarious reward prediction. Human neuroimaging and nonhuman primate studies suggest that a subregion of the anterior cingulate cortex in the gyrus (ACCg) is engaged when others receive rewards.
View Article and Find Full Text PDFSpeed-accuracy trade-off is an intensively studied law governing almost all behavioral tasks across species. Here we show that motivation by reward breaks this law, by simultaneously invigorating movement and improving response precision. We devised a model to explain this paradoxical effect of reward by considering a new factor: the cost of control.
View Article and Find Full Text PDFReinforcement learning (RL) theory posits that learning is driven by discrepancies between the predicted and actual outcomes of actions (prediction errors [PEs]). In social environments, learning is often guided by similar RL mechanisms. For example, teachers monitor the actions of students and provide feedback to them.
View Article and Find Full Text PDFEvaluating the costs and benefits of our own choices is central to most forms of decision-making and its mechanisms in the brain are becoming increasingly well understood. To interact successfully in social environments, it is also essential to monitor the rewards that others receive. Previous studies in nonhuman primates have found neurons in the anterior cingulate cortex (ACC) that signal the net value (benefit minus cost) of rewards that will be received oneself and also neurons that signal when a reward will be received by someone else.
View Article and Find Full Text PDFA plethora of research has implicated the cingulate cortex in the processing of social information (i.e., processing elicited by, about, and directed toward others) and reward-related information that guides decision-making.
View Article and Find Full Text PDFFace recognition is a key component of successful social behaviour. However, the computational processes that underpin perceptual learning and recognition as faces transition from unfamiliar to familiar are poorly understood. In predictive coding, learning occurs through prediction errors that update stimulus familiarity, but recognition is a function of both stimulus and contextual familiarity.
View Article and Find Full Text PDFNothing provides as strong a sense of self as seeing one's face. Nevertheless, it remains unknown how the brain processes the sense of self during the multisensory experience of looking at one's face in a mirror. Synchronized visuo-tactile stimulation on one's own and another's face, an experience that is akin to looking in the mirror but seeing another's face, causes the illusory experience of ownership over the other person's face and changes in self-recognition.
View Article and Find Full Text PDFNeurosci Biobehav Rev
April 2014
Recognising and representing one's self as distinct from others is a fundamental component of self-awareness. However, current theories of self-recognition are not embedded within global theories of cortical function and therefore fail to provide a compelling explanation of how the self is processed. We present a theoretical account of the neural and computational basis of self-recognition that is embedded within the free-energy account of cortical function.
View Article and Find Full Text PDFMirror self-recognition is often considered as an index of self-awareness. Neuroimaging studies have identified a neural circuit specialised for the recognition of one's own current facial appearance. However, faces change considerably over a lifespan, highlighting the necessity for representations of one's face to continually be updated.
View Article and Find Full Text PDF