Publications by authors named "Matthes R"

Objectives: Clinical trials testing new devices require prior training on dummies to minimize the "learning curve" for patients. Dentists were trained using a novel water jet device for mechanical cleaning of dental implants and with a novel cold plasma device for surface functionalisation during a simulated open flap peri-implantitis therapy. The hypothesis was that there would be a learning curve for both devices.

View Article and Find Full Text PDF

Background: We investigated the efficacy of two different cold atmospheric pressure jet plasma devices (CAP09 and CAPmed) and an air polishing device with glycine powder (AP) either applied as monotherapies or combined therapies (AP + CAP09; AP + CAPmed), in microbial biofilm removal from discs with anodised titanium surface.

Methods: Discs covered with 7-day-old microbial biofilm were treated either with CAP09, CAPmed, AP, AP + CAP09 or AP + CAPmed and compared with negative and positive controls. Biofilm removal was assessed with flourescence and electron microscopy immediately after treatment and after 5 days of reincubation of the treated discs.

View Article and Find Full Text PDF

Linear polyglycerol is known as a highly hydrophilic and biocompatible polymer that is currently considered for numerous medical applications. Derived from this well-known structure, the synthesis of highly biocompatible, thermoresponsive polyether copolymers statistical anionic ring-opening copolymerization of ethyl glycidyl ether (EGE) and ethoxy ethyl glycidyl ether (EEGE) is described. Subsequent deprotection of the acetal groups of EEGE yields copolymers of linear glycerol (G) and EGE, P(G--EGE).

View Article and Find Full Text PDF

Peri-implantitis-associated inflammation can lead to bone loss and implant failure. Current decontamination measures are ineffective due to the implants' complex geometry and rough surfaces providing niches for microbial biofilms. A modified water jet system (WaterJet) was combined with cold plasma technology (CAP) to achieve superior antimicrobial efficacy compared to cotton gauze treatment.

View Article and Find Full Text PDF

The polymerization of short-chain alkyl glycidyl ethers (SCAGEs) enables the synthesis of biocompatible polyethers with finely tunable hydrophilicity. Aliphatic polyethers, most prominently poly(ethylene glycol) (PEG), are utilized in manifold biomedical applications due to their excellent biocompatibility and aqueous solubility. By incorporation of short hydrophobic side-chains at linear polyglycerol, control of aqueous solubility and the respective lower critical solution temperature (LCST) in aqueous solution is feasible.

View Article and Find Full Text PDF

Background: Peri-implantitis therapy is a major problem in implantology. Because of challenging rough implant surface and implant geometry, microorganisms can hide and survive in implant microstructures and impede debridement. We developed a new water jet (WJ) device and a new cold atmospheric pressure plasma (CAP) device to overcome these problems and investigated aspects of efficacy in vitro and safety with the aim to create the prerequisites for a clinical pilot study with these medical devices.

View Article and Find Full Text PDF

Objectives: Biofilm removal is the decisive factor for the control of peri-implantitis. Cold atmospheric pressure plasma (CAP) can become an effective aid due to its ability to destroy and to inactivate bacterial biofilm residues. This study evaluated the cleaning efficiency of CAP, and air-polishing with glycine (APG) or erythritol (APE) containing powders alone or in combination with CAP (APG + CAP, APE + CAP) on sandblasted/acid etched, and anodised titanium implant surface.

View Article and Find Full Text PDF

A coherent and overarching framework for health protection from non-ionising radiation (NIR) does not currently exist. Instead, many governments maintain different compliance needs targeting only some NIR exposure situations. An international framework developed by the World Health Organization would promote a globally consistent approach for the protection of people from NIR.

View Article and Find Full Text PDF

Background: Periodontitis is among the most common chronic diseases worldwide, and it is one of the main reasons for tooth loss. Comprehensive profiling of the metabolite content of the saliva can enable the identification of novel pathways associated with periodontitis and highlight non-invasive markers to facilitate time and cost-effective screening efforts for the presence of periodontitis and the prediction of tooth loss.

Methods: We first investigated cross-sectional associations of 13 oral health variables with saliva levels of 562 metabolites, measured by untargeted mass spectrometry among a sub-sample (n = 938) of the Study of Health in Pomerania (SHIP-2) using linear regression models adjusting for common confounders.

View Article and Find Full Text PDF

Peri-implantitis is caused by microbial contamination and biofilm formation on the implant surface. To achieve re-osseointegration, the microbes must be completely removed from the surface. Adjunctive to mechanical cleaning, chemical treatment with enzymes or other substances could optimise the treatment outcome.

View Article and Find Full Text PDF

Reinfection in endodontically treated teeth is linked to the complexity of the root canal system, which is problematic to reach with conventional disinfection methods. As plasma is expected to have the ability to sanitize narrow areas, the aim of this study was to analyze the effect of cold atmospheric pressure plasma (CAP) on Candida albicans in root canals of extracted human teeth. CAP was applied as mono treatment and in combination with standard endodontic disinfectants (sodium hypochlorite, chlorhexidine and octenidine).

View Article and Find Full Text PDF

Purpose: Fast wound healing after abutment connection may reduce infectious complications. Cold atmospheric pressure plasma can increase the hydrophilicity of abutment surfaces, and therefore, the cell attachment, cell density, and sealing could improve to hamper microbial penetration into the wound cavity. In this in vitro study, the effect of three different plasma devices and common antiseptics on cell growth after treatment on zircon ceramic and titanium disks was analyzed.

View Article and Find Full Text PDF

Severely injured patients frequently suffer compromised fracture healing because of systemic post-traumatic inflammation. An important trigger of the posttraumatic immune response is the complement anaphylatoxin C5a, which acts via two receptors, C5aR1 and C5aR2, expressed on immune and bone cells. The blockade of C5a-mediated inflammation during the early inflammatory phase was demonstrated to improve fracture healing after severe injury.

View Article and Find Full Text PDF

Steric bulk prevents the formation of strong bonds between Lewis acids and bases in frustrated Lewis pairs (FLPs), where latent reactivity makes these reagents transformative in small molecule activations and metal-free catalysis. However, their use as a platform for developing materials chemistry is unexplored. Here we report a fully macromolecular FLP, built from linear copolymers that containing either a sterically encumbered Lewis base or Lewis acid as a pendant functional group.

View Article and Find Full Text PDF

Aim: To investigate the effects of a combined biofilm removal with an optimized air polishing and a cold plasma device on cells in vitro.

Materials And Methods: A 7-day-old biofilm was removed from rough titanium discs with an air-polishing device with erythritol powder (AP) or with a cold atmospheric pressure argon plasma (CAP) device or in combination of both (AP + CAP). The removal efficacy was evaluated by subsequent cell seeding of osteoblast-like cells (MG-63).

View Article and Find Full Text PDF

Aim: The antimicrobial activity of cold atmospheric pressure plasma (CAP), also called tissue tolerable plasma (TTP), could be a promising option to eradicate methicillin-sensitive as well as methicillin-resistant Staphylococcus aureus strains, which often colonize chronic wounds. Currently, the influence of CAP on the susceptibility of S. aureus to antibiotics is scarcely known, but could be important for treatment of wounds.

View Article and Find Full Text PDF

The removal of biofilm is a prerequisite for a successful treatment of biofilm-associated diseases. In this study, we compared the feasibility of an atmospheric pressure plasma device with a sonic powered brush to remove naturally grown supragingival biofilm from extracted teeth. Twenty-four periodontally hopeless teeth were extracted.

View Article and Find Full Text PDF

Previous studies on the antimicrobial activity of cold atmospheric pressure argon plasma showed varying effects against mecA+ or mecA-Staphylococcus aureus strains. This observation may have important clinical and epidemiological implications. Here, the antibacterial activity of argon plasma was investigated against 78 genetically different S.

View Article and Find Full Text PDF

Objectives: To prevent oral candidiasis, it is crucial to inactivate Candida-based biofilms on dentures. Common denture cleansing solutions cannot sufficiently inactivate Candida albicans. Therefore, we investigated the anticandidal efficacy of a physical plasma against C.

View Article and Find Full Text PDF

Treatment of implants with peri-implantitis is often unsuccessful, because an instrumented implant surface and residual microbial biofilm impedes re-osseointegration. The application of cold atmospheric plasma (CAP) could be a simple and effective strategy to overcome the inherent problems of peri-implantitis treatment. CAP is able to destroy and eliminate bacterial biofilms.

View Article and Find Full Text PDF

Introduction: The increasing microbial resistance against antibiotics complicates the therapy of bacterial infections. Therefore new therapeutic options, particularly those causing no resistance, are of high interest. Cold atmospheric plasma is one possible option to eradicate multidrug resistant microorganisms, and so far no resistance development against physical plasma is known.

View Article and Find Full Text PDF

An effective amount of the antiseptic agent PHMB cannot simply be placed on the surface of titanium alloys where hydrocarbons were removed by different purification procedures. Pre-treatment of Ti6Al4V specimen with 5% H2O2 in 24 h results in extra introduced -OH and -COOH groups as well as an adsorbed water film on the surface, which provide the base for the subsequent formation of a relatively stable and multi-layered PHMB film. The superficially adhering PHMB film produces no adverse effects on MG63 cells within a 48 h-cell culture, but promotes the initial attachment and spreading of the osteoblasts on the modified Ti6Al4V surface within 15 min.

View Article and Find Full Text PDF

Because of its antimicrobial properties, nonthermal plasma could serve as an alternative to chemical antisepsis in wound treatment. Therefore, this study investigated the inactivation of biofilm-embedded Pseudomonas aeruginosa SG81 by a surface barrier-discharged (SBD) plasma for 30, 60, 150 and 300 s. In order to optimize the efficacy of the plasma, different carrier gases (argon, argon admixed with 1% oxygen, and argon with increased humidity up to approx.

View Article and Find Full Text PDF

Aim. Dental biofilms play a major role in the pathogenesis of many dental diseases. In this study, we evaluated the synergistic effect of atmospheric pressure plasma and different agents in dentistry on the reduction of biofilms.

View Article and Find Full Text PDF

Dental plaque critically affects the etiology of caries, periodontitis and periimplantitis. The mechanical removal of plaque can only be performed partially due to limited accessibility. Therefore, plaque still represents one of the major therapeutic challenges.

View Article and Find Full Text PDF