This paper investigates numerically the shear-induced aggregation of mixed populations of colloidal particles leading to the formation of clusters. Suspensions with different amounts of positively and negatively charged colloidal particles are simulated. To resolve the aggregation kinetics and structural properties of the formed clusters, we resort to a mixed deterministic-stochastic simulation method.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2018
Aggregation and breakup of small particles in stirred suspensions often shows an overshoot in the time evolution of the mean cluster size: Starting from a suspension of primary particles the mean cluster size first increases before going through a maximum beyond which a slow relaxation sets in. Such behavior was observed in various systems, including polymeric latices, inorganic colloids, asphaltenes, proteins, and, as shown by independent experiments in this work, in the flocculation of microalgae. This work aims at investigating possible mechanism to explain this phenomenon using detailed population balance modeling that incorporates refined rate models for aggregation and breakup of small particles in turbulence.
View Article and Find Full Text PDFAggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.
View Article and Find Full Text PDFAggregates prepared under fully destabilized conditions by the action of Brownian motion were exposed to an extensional flow generated at the entrance of a sudden contraction. Two noninvasive techniques were used to monitor their breakup process [i.e.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2012
The breakup of small solid aggregates in homogeneous and isotropic turbulence is studied theoretically and by using direct numerical simulations at high Reynolds number, Reλ =/~ 400. We show that turbulent fluctuations of the hydrodynamic stress along the aggregate trajectory play a key role in determining the aggregate mass distribution function. The differences between turbulent and laminar flows are discussed.
View Article and Find Full Text PDFAggregation of rigid colloidal particles leads to fractal-like structures that are characterized by a fractal dimension d(f) which is a key parameter for describing aggregation processes. This is particularly true in shear aggregation where d(f) strongly influences aggregation kinetics. Direct measurement of d(f) in the early stages of shear aggregation is however difficult, as the aggregates are small and few in number.
View Article and Find Full Text PDFThe breakup of dense aggregates in an extensional flow was investigated experimentally. The flow was realized by pumping the suspension containing the aggregates through a contracting nozzle. Variation of the cluster mass distribution during the breakage process was measured by small-angle light scattering.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2009
Flow-induced aggregation of colloidal particles leads to aggregates with fairly high fractal dimension (df approximately 2.4-3.0) which are directly responsible for the observed rheological properties of sheared dispersions.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2007
Coagulation of small particles in agitated suspensions is governed by aggregation and breakage. These two processes control the time evolution of the cluster mass distribution (CMD) which is described through a population balance equation (PBE). In this work, a PBE model that includes an aggregation rate function, which is a superposition of Brownian and flow induced aggregation, and a power law breakage rate function is investigated.
View Article and Find Full Text PDFA new experimental set-up and a new simulated moving bed (SMB) operation are presented in this work. A desktop SMB unit developed as a modification of the commercial AKTA explorer working platform has been utilized for the separation of different mixtures of nucleosides. Both two fraction and three fraction SMB separations have been carried out, the latter made possible by the adoption of a new SMB configuration and operating mode (three fraction SMB, 3F-SMB, operation).
View Article and Find Full Text PDF