Publications by authors named "Matteo Vatta"

Pathogenic variants in the titin gene (TTN) are known to cause a wide range of cardiac and musculoskeletal disorders, with skeletal myopathy mostly attributed to biallelic variants. We identified monoallelic truncating variants (TTNtv), splice site or internal deletions in TTN in probands with mild, progressive axial and proximal weakness, with dilated cardiomyopathy frequently developing with age. These variants segregated in an autosomal dominant pattern in 7 out of 8 studied families.

View Article and Find Full Text PDF

Long QT syndrome (LQTS), caused by the dysfunction of cardiac ion channels, increases the risk of sudden death in otherwise healthy young people. For many variants in LQTS genes, there is insufficient evidence to make a definitive genetic diagnosis. We have established a robust functional patch-clamp assay to facilitate classification of missense variants in KCNH2, one of the key LQTS genes.

View Article and Find Full Text PDF

We describe three patients with asymmetric congenital myopathy without definite nemaline bodies and one patient with severe nemaline myopathy. In all four patients, the phenotype had been caused by pathogenic missense variants in ACTA1 leading to the same amino acid change, p.(Gly247Arg).

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the genetic differences in dilated cardiomyopathy (DCM) among Black, Hispanic, and White patients, noting that Black patients face higher familial risk and worse health outcomes compared to White patients, despite most existing genetic data coming from the latter group.
  • - Researchers conducted a cross-sectional study involving over 1,000 patients across various US heart failure centers, focusing on genetic variants in 36 DCM-related genes, classified based on their significance and clinical impact.
  • - Findings revealed that Black patients displayed a lower percentage of clinically actionable genetic variants compared to White patients (8.2% vs 25.5%), particularly in the TTN gene, highlighting potential disparities in genetic influences on DCM severity among different ances
View Article and Find Full Text PDF

Background: Marfan syndrome is a potentially fatal inherited autosomal dominant condition impacting the cardiovascular and the skeletal system with an estimated 25% cases caused by sporadic genetic variations. Given the genetic inheritance pattern, an autopsy of probands with Marfan syndrome-associated mortality is critical to establish the phenotypic expression and clinical implications of the particular genetic variant, especially for first-degree relatives. We present the findings of a Marfan syndrome proband decedent presenting with sudden onset abdominal pain and unexplained retroperitoneal abdominal hemorrhage.

View Article and Find Full Text PDF

Alu elements are retrotransposons with ubiquitous presence in the human genome that have contributed to human genomic diversity and health. These approximately 300-bp sequences can cause or mediate disease by disrupting coding/splicing regions in the germline, by insertional mutagenesis in somatic cells, and in promoting formation of copy-number variants. Alu elements may also disrupt epigenetic regulation by affecting non-coding regulatory regions.

View Article and Find Full Text PDF

Introduction: The G1 and G2 variants in the APOL1 gene convey high risk for the progression of chronic kidney disease in African Americans. The G3 variant in APOL1 is more common in patients of European ancestry (EA); outcomes associated with this variant have not been explored previously in EA patients receiving dialysis.

Methods: DNA was collected from approximately half of the patients enrolled in the Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) trial and genotyped for the G3 variants.

View Article and Find Full Text PDF

Importance: Genetic testing can guide management of both cardiomyopathies and arrhythmias, but cost, yield, and uncertain results can be barriers to its use. It is unknown whether combined disease testing can improve diagnostic yield and clinical utility for patients with a suspected genetic cardiomyopathy or arrhythmia.

Objective: To evaluate the diagnostic yield and clinical management implications of combined cardiomyopathy and arrhythmia genetic testing through a no-charge, sponsored program for patients with a suspected genetic cardiomyopathy or arrhythmia.

View Article and Find Full Text PDF

Variants in the LMNA gene, which encodes for Lamin A/C, are associated with cardiac conduction disease (CCD). We previously reported that Lamin A/C variants p.R545H and p.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) has historically been diagnosed phenotypically. Through genetic testing, identification of a molecular diagnosis (MolDx) is increasingly common but the impact on pediatric patients is unknown. This was a retrospective study of next-generation sequencing data for 602 pediatric patients with a clinician-reported history of HCM.

View Article and Find Full Text PDF
Article Synopsis
  • Patients with chronic kidney disease are at high risk for cardiovascular problems, particularly sudden cardiac death (SCD), which is a significant cause of mortality during dialysis.
  • A study compared 126 SCD patients with 107 controls to explore the link between rare genetic variants associated with cardiovascular death and SCD in those on hemodialysis.
  • Results indicated no significant genetic associations, suggesting that genetics may not play a major role in SCD for patients undergoing hemodialysis, despite examining 174 relevant genes.
View Article and Find Full Text PDF

Importance: Familial hypercholesterolemia (FH) is the most common inherited cardiovascular disease and carries significant morbidity and mortality risks. Genetic testing can identify affected individuals, but some array-based assays screen only a small subset of known pathogenic variants.

Objective: To identify the number of clinically significant variants associated with FH that would be missed by an array-based, limited-variant screen when compared with next-generation sequencing (NGS)-based comprehensive testing.

View Article and Find Full Text PDF

Sudden cardiac death (SCD) is an unexpected and dramatic event. It draws special attention especially in young, seemingly healthy athletes. Our scientific paper is based on the death of a young, 23-year-old professional footballer, who died on the football field after a two-year history of cardiac symptoms.

View Article and Find Full Text PDF

Diagnostic laboratories gather phenotypic data through requisition forms, but there is no consensus as to which data are essential for variant interpretation. The ClinGen Cardiomyopathy Variant Curation Expert Panel defined a phenotypic data set for hypertrophic cardiomyopathy (HCM) variant interpretation, with the goal of standardizing requisition forms. Phenotypic data elements listed on requisition forms from nine leading cardiomyopathy testing laboratories were compiled to assess divergence in data collection.

View Article and Find Full Text PDF

Background: Variants in TTN are frequently identified in the genetic evaluation of skeletal myopathy or cardiomyopathy. However, due to the high frequency of TTN variants in the general population, incomplete penetrance, and limited understanding of the spectrum of disease, interpretation of TTN variants is often difficult for laboratories and clinicians. Currently, cardiomyopathy is associated with heterozygous A-band TTN variants, whereas skeletal myopathy is largely associated with homozygous or compound heterozygous TTN variants.

View Article and Find Full Text PDF