Publications by authors named "Matteo Springolo"

We predict a large in-plane polarization response to bending in a broad class of trigonal two-dimensional crystals. We define and compute the relevant flexoelectric coefficients from first principles as linear-response properties of the undistorted layer by using the primitive crystal cell. The ensuing response (evaluated for SnS_{2}, silicene, phosphorene, and RhI_{3} monolayers and for a hexagonal BN bilayer) is up to 1 order of magnitude larger than the out-of-plane components in the same material.

View Article and Find Full Text PDF

Building on recent developments in electronic-structure methods, we define and calculate the flexoelectric response of two-dimensional (2D) materials fully from first principles. In particular, we show that the open-circuit voltage response to a flexural deformation is a fundamental linear-response property of the crystal that can be calculated within the primitive unit cell of the flat configuration. Applications to graphene, silicene, phosphorene, boron nitride, and transition-metal dichalcogenide monolayers reveal that two distinct contributions exist, respectively of purely electronic and lattice-mediated nature.

View Article and Find Full Text PDF