Publications by authors named "Matteo Spagnuolo"

Compost from municipal solid waste (MSWC) can represent a resource for the environmental management of soils contaminated with potentially toxic elements (PTEs), since it can reduce their mobility and improve soil fertility. However, the long-term impact of compost on soil recovery has been poorly investigated. To this end, the influence of a MSWC added at different rates (i.

View Article and Find Full Text PDF

Fire events can modify the distribution and speciation of potentially toxic elements (PTEs) in soil, especially if they are associated to organic matter (OM). In fact, OM can undergo substantial structural modifications at high temperatures, up to the complete mineralization. The present study aims to investigate the changes of PTEs' bioavailability to durum wheat (Triticum durum Desf.

View Article and Find Full Text PDF

In the last years, uncontrolled fires are frequently occurring in forest and agricultural areas as an indirect effect of the rising aridity and global warming or caused by intentional illegal burnings. In addition, controlled burning is still largely used by farmers as an agricultural practice in many parts of the world. During fire events, soil can reach very high temperatures at the soil surface, causing dramatic changes of soil properties and elements biogeochemistry.

View Article and Find Full Text PDF

A combined approach based on multiple X-ray analytical techniques and conventional methods was adopted to investigate the distribution and speciation of Cr in a polluted agricultural soil, from the bulk-scale down to the (sub)micro-level. Soil samples were collected from two different points, together with a control sample taken from a nearby unpolluted site. The bulk characterization revealed that the polluted soils contained much higher concentrations of organic matter (OM) and potentially toxic elements (PTE) than the control.

View Article and Find Full Text PDF

Occurrences of high arsenic (As) in sediments and groundwaters were investigated in the Claromecó fluvial basin, southern Pampean plain, Argentina. This investigation includes sedimentology, mineralogy, and hydrogeochemistry of the Neogene and Quaternary aquifers to determine possible sources and transport mechanisms for As in the Claromecó basin. Characterization of the sediments revealed homogeneous mineralogy in both Neogene highlands and Quaternary floodplains with abundant plagioclase, volcanic glass shards (VGS), K-feldspar, quartz, clay minerals and minor concentrations of clinopyroxenes, orthopyroxenes, hornblende, epidote, Fe-(oxy)hydroxides and fluorapatite.

View Article and Find Full Text PDF
Article Synopsis
  • A study used advanced X-ray spectroscopy techniques to analyze how earthworms accumulate arsenic (As) when exposed to polluted soils with varying arsenic levels.
  • After a 14-day exposure, researchers examined As distribution in the earthworms, confirming high accumulation in their body and coelomic fluid using techniques like micro-X-ray fluorescence spectroscopy and XRF-computed tomography.
  • The findings revealed a strong correlation between arsenic levels in the earthworm's body and coelomic fluid, suggesting that measuring As in the coelomic fluid can effectively indicate arsenic availability in contaminated soils, which aids in assessing environmental risks.
View Article and Find Full Text PDF

Arsenic concentration and distribution were studied by combining laboratory X-ray-based techniques (wavelength dispersive X-ray fluorescence (WDXRF), micro X-ray fluorescence (μXRF), and X-ray powder diffraction (XRPD)), field emission scanning electron microscopy equipped with microanalysis (FE-SEM-EDX), and sequential extraction procedure (SEP) coupled to total reflection X-ray fluorescence (TXRF) analysis. This approach was applied to three contaminated soils and one mine tailing collected near the gold extraction plant at the Crocette gold mine (Macugnaga, VB) in the Monte Rosa mining district (Piedmont, Italy). Arsenic (As) concentration, measured with WDXRF, ranged from 145 to 40,200 mg/kg.

View Article and Find Full Text PDF

Hexavalent chromium was stabilized in soil by using a mixture of glass and aluminum recovered from municipal solid wastes under alkaline hydrothermal conditions. Cr(VI) concentration was reduced by 94-98% already after 7days of treatment. After the same period, more than 90% of total Cr was stabilized in highly recalcitrant and scarcely mobile chemical forms, with 50% in the residual fraction (when the samples were treated at 1/10w/w mixture/soil ratio).

View Article and Find Full Text PDF

Mechanochemistry, a technique concerning with milling contaminated samples for prolonged times, induces massive degradation of pollutants by grinding them in ball mills with different soil components or additives. In the present study, laboratory experiments were conducted to evaluate the effect of aging on the mechanochemical efficiency of the Mn-oxide birnessite in degrading pentachlorophenol (PCP). A comparative study on an aged birnessite (KBiA), used after 3years from synthesis, and a fresh birnessite (KBiF), employed immediately after synthesis, was carried out.

View Article and Find Full Text PDF

Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg(-1). Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as mu-XRF, mu-XRD and mu-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 microm.

View Article and Find Full Text PDF

Several approaches to monitor the bioavailability and ecotoxicity of pentachlorophenol (PCP) in sterile and non sterile soils as a function of aging are reported. Porapak resins and water were used to assess the bioaccessibility and the bioavailability of PCP in soil. Aging effects were observed mainly after 240 d of aging.

View Article and Find Full Text PDF

The influence of compost on the bioaccessibility, bioavailability and ecotoxicity of pentachlorophenol (PCP) as a function of time was studied by means of different chemical and ecotoxicological methods. Experiments were conducted in both sterile and non-sterile microcosms and samplings carried out at 20, 60 and 120d from initial contamination. PCP bioaccessibility, assessed by means of Porapak resin extraction, was around 75% of the applied dose with no aging or compost effects.

View Article and Find Full Text PDF

The major geochemical forms of Cr, Ni, Cu, Zn, Pb, and V in a soil from an industrial polluted site in the south of Italy were determined by means of synchrotron X-ray microanalytical techniques such as coupled micro-X-ray fluorescence/micro-X-ray diffraction and micro-X-ray absorption near edge structure spectroscopy in combination with bulk extraction methods (sequential extraction procedures, EDTA extractions, and toxicity leaching characteristic procedure tests). Cr, Ni, Zn, and Cu were found in spinel-type geochemical forms (chromite, trevorite, franklinite, zincochromite, and cuprospinel) and often in association with magnetite and hematite. Vwas mainly present as V(V) associated with iron-oxides or in the form of volborthite [Cu3(OH)2V2O7.

View Article and Find Full Text PDF

Pentachlorophenol (PCP) is widely distributed and highly persistent in soil, and represents a threat to the health of ecosystems. The present study aimed to assess the toxicity and bioavailability of PCP in soils as a function of different aging periods with the attempt to select a good toxicological assay for Eisenia andrei Bouché (Annelida: Lumbricidae). The experiments were performed on soil contaminated with PCP at 15 and 150ppm.

View Article and Find Full Text PDF

Soil samples collected from a cultivated soil of Southern Italy after artificial contamination with phenanthrene (PHE) were ground in a ball mill and compared with spiked (via acetone) sample as control. The mechanochemical treatment was also applied to a simple binary system birnessite (delta-MnO(2))-PHE and to soil added with birnessite to evaluate the oxide role in removing the contaminant. Different extraction methods, such as Soxhlet, sonication, and desorption from resin beads were adopted to estimate the residual PHE analysed with HPLC.

View Article and Find Full Text PDF

Electron paramagnetic resonance spectroscopy is used to monitor the bioavailability of a nitroxide spin probe, 4-hydroxy-Tempo or Tempol, in Ca-hectorite suspensions and pastes, to bacteria capable of degrading this probe co-metabolically. In nutrient solutions with an initial probe concentration of 1.2 mM and in the absence of hectorite, bacteria are able to denature Tempol and eliminate its paramagnetic signal within 48 h.

View Article and Find Full Text PDF

Until recently, there were no techniques capable of direct observation of the microscale locations where nonpolar organic compounds accumulate when associated with natural geosorbents. The ability of electron paramagnetic resonance (EPR) spectroscopy to monitor and elucidate directly the different molecular-scale environments of paramagnetic spin probes has been demonstrated lately in model soils, yet it remains untested in complex systems. In this general context, the present investigation was aimed at assessing the extent to which EPR could be used to monitor the sorption of 4-hydroxy-2,2,6,6-tetramethyl-piperidinyloxy benzoate (TEMPO benzoate), a hydrophobic spin probe, on a smectite (hectorite), two humic acids, and their complexes in the presence or absence of aluminum hydroxide.

View Article and Find Full Text PDF

This study deals with the process of zeolite formation in an agricultural soil artificially polluted by high amounts of Cu (15 mg of Cu/g of soil dry weight) and treated with fused coal fly ash at 30 and 60 degrees C and how this process affects the mobility and availability of the metal. As a consequence of the treatment, the amount of dissolved Cu, and thus its mobility, was strongly reduced, and the percentage of the metal stabilized in the solid phase increased over time, reaching values of 30% at 30 degrees C and 40% at 60 degrees C. The physicochemical phenomena responsible for Cu stabilization in the solid phase have been evaluated by EDTA sequential extractions and synchrotron radiation based X-ray microanalytical techniques.

View Article and Find Full Text PDF

Precipitation of highly insoluble metal sulfide minerals like acanthite (beta-Ag2S) or red cinnabar (HgS) is in principle an effective means to reduce metal availability and toxicity in contaminated soils. Unfortunately, experiments have shown that red cinnabar may be solubilized in the presence of dissolved organic matter or thiol ligands. To determine whether the same applies to acanthite, a laboratory synthesized beta-Ag2S mineral was incubated for up to 3 weeks in the presence of KNO3, dissolved humic acids, cysteine, methionine and thiosulfate.

View Article and Find Full Text PDF

The purpose of this work is to evaluate the catalytic efficiency of two metal oxides, ferrihydrite and birnessite and of a ferruginous smectite, towards organic molecules such as 4-chloroaniline (4-CA), pentachlorophenol (PCP), and five polychlorinated biphenyls (PCBs) characterised by different number and position of chlorine atoms. Mechanochemical dry contacts with light grinding between catalytic surfaces and pollutants have been carried out. The efficiency of the mechanochemical removal was compared with batch experiments for the soluble compounds (PCP and 4-CA).

View Article and Find Full Text PDF