Publications by authors named "Matteo Semplice"

Current modelling approaches often ignore the dynamics of organic chemicals uptake/release in forest compartments under changing environmental conditions and may fail in accurately predict exposure to chemicals for humans and ecosystems. In order to investigate the influence of such dynamics on predicted concentrations in forest compartments, as well as, on air-leaf-litter fluxes, the SoilPlusVeg model was developed including a forest compartment (root, stem, leaves) in an existing air-litter-soil model. The accuracy of the model was tested simulating leaf concentrations in broadleaf woods located in Northern Italy and resulted in satisfying model performance.

View Article and Find Full Text PDF

In exposure prediction for environmental risk assessment, the transition to more dynamic and realistic modelling approaches and scenarios has been recently identified as a major challenge, since it would allow a more accurate prediction of bioavailable concentrations and their variations in space and time. In this work, an improved version of the multimedia model ChimERA fate, including a phytoplankton compartment and equations to calculate phytoplankton, detritus and dissolved organic matter variations in time, was developed. The model was parameterized to simulate five dynamic scenarios for shallow meso-eutrophic water bodies based on a latitudinal gradient (in Europe); such scenarios include seasonal profiles of water temperature, phytoplankton biomass, detritus, and dissolved organic matter.

View Article and Find Full Text PDF

In ecological risk assessment, exposure is generally modelled assuming static conditions, herewith neglecting the potential role of emission, environmental and biomass dynamics in affecting bioavailable concentrations. In order to investigate the influence of such dynamics on predicted bioavailable concentrations, the spatially-resolved dynamic model "ChimERA fate" was developed, incorporating macrophyte and particulate/dissolved organic carbon (POC/DOC) dynamics into a water-sediment system. An evaluation against three case studies revealed a satisfying model performance.

View Article and Find Full Text PDF

Falling snow acts as an efficient scavenger of contaminants from the atmosphere and, accumulating on the ground surface, behaves as a temporary storage reservoir; during snow aging and metamorphosis, contaminants may concentrate and be subject to pulsed release during intense snow melt events. In high-mountain areas, firn and ice play a similar role. The consequent concentration peaks in surface waters can pose a risk to high-altitude ecosystems, since snow and ice melt often coincide with periods of intense biological activity.

View Article and Find Full Text PDF

Ultrasensitivity, as described by Goldbeter and Koshland, has been considered for a long time as a way to realize bistable switches in biological systems. It is not as well recognized that when ultrasensitivity and reinforcing feedback loops are present in a spatially distributed system such as the cell plasmamembrane, they may induce bistability and spatial separation of the system into distinct signaling phases. Here we suggest that bistability of ultrasensitive signaling pathways in a diffusive environment provides a basic mechanism to realize cell membrane polarity.

View Article and Find Full Text PDF

Growing attention is devoted to understand the influence of the short-term variations in air concentrations on the environmental fate of semivolatile organic compounds (SVOCs) such as polycyclic aromatic hydrocarbons (PAHs). These variations are ascribable to factors such as temperature-mediated air-surface exchange and variability of planetary boundary layer (PBL) height and structure. But when investigating the fate of SVOCs at a local scale, further variability can derive from specific point source contributions.

View Article and Find Full Text PDF

Monitoring campaigns from different locations have recently shown how air concentrations of persistent semivolatile contaminants such as polychlorinated biphenyls (PCBs) often exhibit short-term (less than 24 h) variations. The observed patterns have been ascribed to different factors, such as temperature-mediated air-surface exchange and variability of planetary boundary layer (PBL) height and dynamics. Here, we present a new modeling approach developed in order to investigate the short-term variability in air concentrations of organic pollutants at a local scale.

View Article and Find Full Text PDF

A new site-specific, dynamic model (SoilPlus) was developed to simulate the fate of nonionized organic chemicals in the air/litter/soil system; key features of the model are the double-layered air compartment interacting dynamically with multilayered litter and soil compartments, with seasonal dissolved organic carbon (DOC) fluxes. The model describes the soil environment calculating separate mass balances for water, chemical, and organic matter. SoilPlus underwent a process of benchmarking and evaluation in order to reach a satisfying confirmation of its predictive capability.

View Article and Find Full Text PDF