Multidetector computed tomography (MDCT) is currently the imaging technique of choice for the assessment of tricuspid valve (TV) annulus geometry and relationship with the right coronary artery (RCA). However, standardized protocols with a full 3D analysis are still lacking to plan percutaneous procedures for functional tricuspid regurgitation (FTR). A novel customized 4-dimensional tool based on MDCT data was developed and provided accurate information on TV annulus morphology (3D-perimeter, 2D-Area, maximum and minimum diameters, eccentricity index), function and distance to the RCA, crucial for patient selection of percutaneous TV procedures.
View Article and Find Full Text PDFImage-based patient-specific Computational Fluid Dynamics (CFD) models of the Left Ventricle (LV) can be used to quantify hemodynamics-based biomarkers that can support the clinicians in the early diagnosis, follow-up and treatment planning of patients, beyond the capabilities of the current imaging modalities. We propose a workflow to build patient-specific CFD models of the LV with moving boundaries based on the Chimera technique to overcome the convergence issues previously encountered by means of the Arbitrarian Lagrangian Eulerian approach. The workflow was tested while investigating whether the torsional motion has an impact on LV fluid dynamics.
View Article and Find Full Text PDFSemin Thorac Cardiovasc Surg
March 2021
In Sleeve procedure, the leaflets-sinus unit is maintained. We hypothesized that this feature partially preserves aortic root (AR) dynamics and leaflets kinematics and limits tensions in the leaflets. We tested our hypothesis based on in vivo and computational assessment of leaflets and AR dynamics.
View Article and Find Full Text PDFIntroduction:: Despite significant technical advancements in the design and manufacture of Left Ventricular Assist Devices, post-implant thrombotic and thromboembolic complications continue to affect long-term outcomes. Previous efforts, aimed at optimizing pump design as a means of reducing supraphysiologic shear stresses generated within the pump and associated prothrombotic shear-mediated platelet injury, have only partially altered the device hemocompatibility.
Methods:: We examined hemodynamic mechanisms that synergize with hypershear within the pump to contribute to the thrombogenic potential of the overall Left Ventricular Assist Device system.
Background: Transapical off-pump mitral valve (MV) repair is a novel minimally-invasive surgical technique, allowing to correct mitral regurgitation (MR) caused by chordae tendineae rupture. While numerical simulation of the MV structure has proven to be useful to evaluate the effects of the MV surgical repair techniques, no numerical simulation studies on the outcomes of transapical MV repair have been done up to now.
Objective: The purpose of this study is to evaluate the transapical MV repair using finite element modeling and to determine the effect of the neochordal length on the function of the prolapsing MV.
Background: Accurate quantification of mitral valve (MV) morphology and dynamic behavior over the cardiac cycle is crucial to understand the mechanisms of degenerative MV dysfunction and to guide the surgical intervention. Cardiac magnetic resonance (CMR) imaging has progressively been adopted to evaluate MV pathophysiology, although a dedicated framework is required to perform a quantitative assessment of the functional MV anatomy.
Methods: We investigated MV dynamic behavior in subjects with normal MV anatomy (n=10) and patients referred to surgery due to degenerative MV prolapse, classified as fibro-elastic deficiency (FED, n=9) and Barlow's disease (BD, n=10).
Background: Aortic root aneurysm can be treated with valve-sparing procedures. The David and Yacoub techniques have shown excellent long-term results but are technically demanding. Recently, a new and simpler procedure, the Sleeve technique, was proposed with encouraging results.
View Article and Find Full Text PDF