Background: Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined.
Methods: To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype.
Life and medical science researchers increasingly rely on applications that lack a graphical interface. Scientists who are not trained in computer science face an enormous challenge analyzing high-throughput data. We present a training model for use of command-line tools when the learner has little to no prior knowledge of UNIX.
View Article and Find Full Text PDFInherent genetic programming and environmental factors affect fetal growth in utero. Epidemiologic data in growth-altered fetuses, either intrauterine growth restricted (IUGR) or large for gestational age (LGA), demonstrate that these newborns are at increased risk of cardiometabolic disease in adulthood. There is growing evidence that the in utero environment leads to epigenetic modification, contributing to eventual risk of developing heart disease or diabetes.
View Article and Find Full Text PDFMacrophages (Mϕs) of patients with Alzheimer's disease and mild cognitive impairment (MCI) are defective in amyloid-β (Aβ) phagocytosis and have low resistance to apoptosis by Aβ. Omega-3 fatty acids (ω-3s) and and the ω-3 mediator, resolvin D1, increase Aβ phagocytosis by Mϕs of patients with MCI. We have investigated the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress by Mϕs in a longitudinal study of fish-derived, ω-3-supplemented patients with MCI.
View Article and Find Full Text PDFPurpose: Pathologic staging of bladder cancer patients remains a challenge. Standard-of-care histology exhibits limited sensitivity in detection of micrometastases, which can increase risk of cancer progression and delay potential adjuvant therapies. Here, we sought to develop a proof of concept novel molecular approach to improve detection of cancer micrometastasis.
View Article and Find Full Text PDFMicroalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga , because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions.
View Article and Find Full Text PDFThe innate immune system of patients with Alzheimer's disease and mild cognitive impairment (MCI) is deregulated with highly increased or decreased transcription of inflammatory genes and consistently depressed phagocytosis of amyloid-β (Aβ) by monocytes and macrophages. Current immune therapies target single mechanisms in the adaptive immune system but not innate immunity. Here, we summarize recent advances in therapy by ω-3, ω-6, and epoxy fatty acids; specialized proresolving mediators; and vitamin D that have proven immune effects and emerging cognitive effects in patients with MCI.
View Article and Find Full Text PDFSeveral articles describe highly accurate age estimation methods based on human DNA-methylation data. It is not yet known whether similar epigenetic aging clocks can be developed based on blood methylation data from canids. Using Reduced Representation Bisulfite Sequencing, we assessed blood DNA-methylation data from 46 domesticated dogs () and 62 wild gray wolves ().
View Article and Find Full Text PDFRetroviral gene therapy has proved efficacious for multiple genetic diseases of the hematopoietic system, but roughly half of clinical gene therapy trial protocols using gammaretroviral vectors have reported leukemias in some of the patients treated. In dramatic contrast, 39 adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) patients have been treated with 4 distinct gammaretroviral vectors without oncogenic consequence. We investigated clonal dynamics and diversity in a cohort of 15 ADA-SCID children treated with gammaretroviral vectors and found clear evidence of genotoxicity, indicated by numerous common integration sites near proto-oncogenes and by increased abundance of clones with integrations near and These clones showed stable behavior over multiple years and never expanded to the point of dominance or dysplasia.
View Article and Find Full Text PDFFolate B-dependent remethylation of homocysteine is important, but less is understood about the importance of the alternative betaine-dependent methylation pathway-catalyzed by betaine-homocysteine methyltransferase (BHMT)-for establishing and maintaining adequate DNA methylation across the genome. We studied C57Bl/6J (betaine-homocysteine methyltransferase)-null mice at age 4, 12, 24, and 52 wk ( = 8) and observed elevation of -adenosylhomocysteine concentrations and development of preneoplastic foci in the liver (increased placental glutathione -transferase and cytokeratin 8-18 activity; starting at 12 wk). At 4 wk, we identified 63 differentially methylated CpGs (DMCs; false discovery rate < 5%) proximal to 81 genes (across 14 chromosomes), of which 18 were differentially expressed.
View Article and Find Full Text PDFRibosome biogenesis in Saccharomyces cerevisiae involves a regulon of >200 genes (Ribi genes) coordinately regulated in response to nutrient availability and cellular growth rate. Two cis-acting elements called PAC and RRPE are known to mediate Ribi gene repression in response to nutritional downshift. Here, we show that most Ribi gene promoters also contain binding sites for one or more General Regulatory Factors (GRFs), most frequently Abf1 and Reb1, and that these factors are enriched in vivo at Ribi promoters.
View Article and Find Full Text PDFB-cell development in the bone marrow is followed by specification into functional subsets in the spleen, including marginal zone (MZ) B-cells. MZ B-cells are classically characterized by T-independent antigenic responses and require the elaboration of distinct gene expression programs for development. Given their role in gene regulation, it is not surprising that microRNAs are important factors in B-cell development.
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain.
View Article and Find Full Text PDFWith more than 500,000 copies, mammalian-wide interspersed repeats (MIRs), a sub-group of SINEs, represent ∼2.5% of the human genome and one of the most numerous family of potential targets for the RNA polymerase (Pol) III transcription machinery. Since MIR elements ceased to amplify ∼130 myr ago, previous studies primarily focused on their genomic impact, while the issue of their expression has not been extensively addressed.
View Article and Find Full Text PDFApplications of embryonic stem cells (ESCs) require faithful chromatin changes during differentiation, but the fate of the X chromosome state in differentiating ESCs is unclear. Female human ESC lines either carry two active X chromosomes (XaXa), an Xa and inactive X chromosome with or without XIST RNA coating (XiXa;XiXa), or an Xa and an eroded Xi (XeXa) where the Xi no longer expresses XIST RNA and has partially reactivated. Here, we established XiXa, XeXa, and XaXa ESC lines and followed their X chromosome state during differentiation.
View Article and Find Full Text PDFBackground: Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids.
Results: We sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol.
Mammalian tissues calcify with age and injury. Analogous to bone formation, osteogenic cells are thought to be recruited to the affected tissue and induce mineralization. In the heart, calcification of cardiac muscle leads to conduction system disturbances and is one of the most common pathologies underlying heart blocks.
View Article and Find Full Text PDFIntrauterine growth restriction (IUGR) affects up to 10% of pregnancies and often results in short- and long-term sequelae for offspring. The mechanisms underlying IUGR are poorly understood, but it is known that healthy placentation is essential for nutrient provision to fuel fetal growth, and is regulated by immunologic inputs. We hypothesized that in pregnancy, maternal food restriction (FR) resulting in IUGR would decrease the overall immunotolerant milieu in the placenta, leading to increased cellular stress and death.
View Article and Find Full Text PDFPLoS Comput Biol
November 2016
In multiple studies DNA methylation has proven to be an accurate biomarker of age. To develop these biomarkers, the methylation of multiple CpG sites is typically linearly combined to predict chronological age. By contrast, in this study we apply the Universal PaceMaker (UPM) model to investigate changes in DNA methylation during aging.
View Article and Find Full Text PDFBackground: Complex diseases are characterized by multiple subtle perturbations to biological processes. New omics platforms can detect these perturbations, but translating the diverse molecular and statistical information into testable mechanistic hypotheses is challenging. Therefore, we set out to create a public tool that integrates these data across multiple datasets, platforms, study designs and species in order to detect the most promising targets for further mechanistic studies.
View Article and Find Full Text PDFPurpose: The transcriptional regulation mediating cancer cell differentiation into distinct molecular subtypes and modulating sensitivity to existing treatments is an enticing therapeutic target. Our objective was to characterize the ability of the forkhead/winged transcription factor FOXP3 to modulate the differentiation of bladder cancer.
Experimental Design: Expression of FOXP3 was analyzed by immunohistochemistry in a tumor microarray of 587 samples and overall survival in a subset of 187 patients following radical cystectomy.
Transcriptome profiles derived from the site of human disease have led to the identification of genes that contribute to pathogenesis, yet the complex mixture of cell types in these lesions has been an obstacle for defining specific mechanisms. Leprosy provides an outstanding model to study host defense and pathogenesis in a human infectious disease, given its clinical spectrum, which interrelates with the host immunologic and pathologic responses. Here, we investigated gene expression profiles derived from skin lesions for each clinical subtype of leprosy, analyzing gene coexpression modules by cell-type deconvolution.
View Article and Find Full Text PDFDNA methylation is one of a number of modes of epigenetic gene regulation. Here, we profile the DNA methylome, transcriptome, and global occupancy of histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac) in a series of mouse embryonic stem cells (mESCs) with varying DNA methylation levels to study the effects of DNA methylation on deposition of histone modifications. We find that genome-wide DNA demethylation alters occupancy of histone modifications at both promoters and enhancers.
View Article and Find Full Text PDF