IEEE Trans Vis Comput Graph
September 2024
Graphs are often used to model relationships between entities. The identification and visualization of clusters in graphs enable insight discovery in many application areas, such as life sciences and social sciences. Force-directed graph layouts promote the visual saliency of clusters, as they bring adjacent nodes closer together, and push non-adjacent nodes apart.
View Article and Find Full Text PDFIn this work, we explore the role of immigrant-critical alternative media in shaping collective emotions and users' evaluations of the immigration issue, using a conversational approach and an empirical case of Flashback, a prominent Swedish online platform where many immigration-related discussions take place. Our text and network-based analysis of more than 9,000 conversations during the last election period reveals that the platform users consume and distribute diverging types of media content across a wide ideological spectrum which, however, has a limited influence on the evolution of conversations and users' stances in the immigration debate. Nevertheless, we find that the conversation networks with alternative media content tend to include more negative evaluations of the immigration issue, attracting fewer participants and lasting less than other conversations.
View Article and Find Full Text PDFA principled approach to recover communities in social networks is to find a clustering of the network nodes into modules (i.e groups of nodes) for which the modularity over the network is maximal. This guarantees partitioning the network nodes into sparsely connected groups of densely connected nodes.
View Article and Find Full Text PDFComputing layer similarities is an important way of characterizing multiplex networks because various static properties and dynamic processes depend on the relationships between layers. We provide a taxonomy and experimental evaluation of approaches to compare layers in multiplex networks. Our taxonomy includes, systematizes and extends existing approaches, and is complemented by a set of practical guidelines on how to apply them.
View Article and Find Full Text PDFThree fundamental elements to understand human information networks are the individuals (actors) in the network, the information they exchange, that is often observable online as text content (emails, social media posts, etc.), and the time when these exchanges happen. An extremely large amount of research has addressed some of these aspects either in isolation or as combinations of two of them.
View Article and Find Full Text PDFThe shortest path problem is one of the most fundamental networks optimization problems. Nowadays, individuals interact in extraordinarily numerous ways through their offline and online life (e.g.
View Article and Find Full Text PDFWnt signaling pathway plays a critical role in numerous cellular processes, including tumor initiation, proliferation, invasion/infiltration, metastasis formation and resistance to chemotherapy. In a drug discovery project aimed at the identification of inhibitors of the canonical Wnt pathway, we selected a series of quinazoline 2,4-diones as starting point for the therapeutic treatment of glioblastoma multiforme. Despite of poor physico-chemical properties of hit compound 1, our medicinal chemistry effort allowed the discovery and characterization of lead compound 33 (SEN461), with improved ADME profile, good bioavailability and active in vitro and in vivo in glioblastoma, gastric and sarcoma tumors.
View Article and Find Full Text PDFTwo libraries of substituted benzimidazoles were designed using a 'scaffold-hopping' approach based on reported MDM2-p53 inhibitors. Substituents were chosen following library enumeration and docking into an MDM2 X-ray structure. Benzimidazole libraries were prepared using an efficient solution-phase approach and screened for inhibition of the MDM2-p53 and MDMX-p53 protein-protein interactions.
View Article and Find Full Text PDFThe design and optimization of small molecule inhibitors of the murine double minute clone 2-p53 (p53-MDM2) interaction has attracted a great deal of interest as a way to novel anticancer therapies. Herein we report 3D-QSAR studies of 41 small molecule inhibitors based on the use of molecular interaction fields and docking experiments as part of an approach to generating predictive models of MDM2 affinity and shedding further light on the structural elements of the ligand-target interaction. These studies have yielded predictive models explaining much of the variance of the 41 compound training set and satisfactorily predicting with 75% success an external test set of 36 compounds.
View Article and Find Full Text PDFTaxanes and other microtubule-stabilizing agents comprise an important class of anticancer drugs. It is well known that taxanes act by binding to beta-tubulin on the lumenal side of microtubules. However, experimental evidence obtained in recent years led to the hypothesis of an external site on the microtubule wall to which taxanes and other microtubule-stabilizing agents could bind before being internalized to their lumenal site.
View Article and Find Full Text PDFTubulin targeting agents constitute an important class of anticancer drugs. By acting either as microtubule stabilizers or destabilizers, they disrupt microtubule dynamics, thus inducing mitotic arrest and, ultimately, cell death by apoptosis. Three different binding sites, whose exact location on tubulin has been experimentally detected, have been identified so far for antimitotic compound targeting microtubules, namely the taxoid, the colchicine and the vinka alkaloid binding site.
View Article and Find Full Text PDFPharmacophoresthree-dimensional (3D) arrangements of essential features enabling a molecule to exert a particular biological effectconstitute a very useful tool in drug design both in hit discovery and hit-to-lead optimization process. Two basic approaches for pharmacophoric model generation can be used by chemists, depending on the availability or not of the target 3D structure. In view of the rapidly growing number of protein structures that are now available, receptor-based pharmacophore generation methods are becoming more and more used.
View Article and Find Full Text PDFAs a continuation of our previous work that turned toward the identification of antimycobacterial compounds with innovative structures, two series of pyrazole derivatives were synthesized by parallel solution-phase synthesis and were assayed as inhibitors of Mycobacterium tuberculosis (MTB), which is the causative agent of tuberculosis. One of these compounds showed high activity against MTB (MIC = 4 microg/mL). The newly synthesized pyrazoles were also computationally investigated to analyze their fit properties to the pharmacophoric model for antitubercular compounds previously built by us and to refine structure-activity relationship analysis.
View Article and Find Full Text PDFDocking simulations and three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis were performed on a wide set of c-Src inhibitors. The study was conducted using a structure-based alignment and by applying the GRID/GOLPE approach. The present 3D-QSAR investigation proved to be of good statistical value, displaying r(2), q(2) and cross-validation SDEP values of 0.
View Article and Find Full Text PDFResults from molecular docking calculations and Grid mapping laid the foundations for a structure-based optimization approach to improve the biological properties of pyrazolo-pyrimidine derivatives in terms of inhibition of Abl enzymatic activity and antiproliferative properties toward human leukemia cells. Insertion of halogen substituents with various substitution patterns, suggested by simulations, led to a significant improvement of leukemia cell growth inhibition and to an increase up to 1 order of magnitude of the affinity toward Abl.
View Article and Find Full Text PDFTaxanes represent one of the most promising classes of anticancer agents. Unfortunately, their clinical success has been limited by the insurgence of cellular resistance, mainly mediated by the expression of the MDR phenotype or by microtubule alterations. However, the remarkable relevance of paclitaxel and docetaxel in clinical oncology stimulated intensive efforts in the last decade to identify new derivatives endowed with improved activities towards resistant tumor cells, resulting in a huge number of novel natural and synthetic taxanes.
View Article and Find Full Text PDFA series of pyrazolo[3,4-d]pyrimidines, previously found to be Src inhibitors, was tested for their ability to inhibit proliferation of three Bcr-Abl-positive human leukemia cell lines (K-562, KU-812, and MEG-01), on the basis of the experimental evidence that various Src inhibitors are also active against Bcr-Abl kinase (the so called dual Src/Abl inhibitors). They reduce Bcr-Abl tyrosine phosphorylation and promote apoptosis of the Bcr-Abl-expressing cells. A cell-free enzymatic assay on isolated c-Abl confirmed that such compounds directly inhibit Abl activity.
View Article and Find Full Text PDFIn an attempt to identify new inhibitors of the growth of Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis, a procedure for the generation, design, and screening of a ligand-based virtual library was applied. This used both an in silico protocol centered on a recursive partitioning (RP) model described herein, and a pharmacophoric model for antitubercular agents previously generated by our research group. Two candidates emerged from databases of commercially available compounds, both characterized by a minimum inhibitory concentration (MIC) of 25 microg mL(-1).
View Article and Find Full Text PDFBoth microtubule destabilizer and stabilizer agents are important molecules in anticancer therapy. In particular, paclitaxel has been demonstrated to be effective for the treatment of ovarian, breast, and nonsmall cell lung carcinomas. It has been shown that emergence of resistance against this agent correlates with an increase in the relative abundance of tubulin isoform betaIII and that the more recently discovered IDN5390 can be effectively used once resistance has emerged.
View Article and Find Full Text PDFThe genetic function approximation (GFA) algorithm has been used to derive a three-term QSAR equation able to correlate the structural properties of arylpiperazine derivatives with their affinity toward the alpha1 adrenoceptor (alpha1-AR). The number of rotatable bonds, the hydrogen-bond properties, and a variable belonging to a topological family of descriptors (chi) showed significant roles in the binding process toward alpha1-AR. The new model was also compared to a previous pharmacophore for alpha1-AR antagonists and a QSAR model for alpha2-AR antagonists with the aim of finding common or different key determinants influencing both affinity and selectivity toward alpha1- and alpha2-AR.
View Article and Find Full Text PDF