Publications by authors named "Matteo Ippoliti"

Scanning microscopies and spectroscopies like X-ray Fluorescence (XRF), Scanning Transmission X-ray Microscopy (STXM), and Ptychography are of very high scientific importance as they can be employed in several research fields. Methodology and technology advances aim at analysing larger samples at better resolutions, improved sensitivities and higher acquisition speeds. The frontiers of those advances are in detectors, radiation sources, motors, but also in acquisition and analysis software together with general methodology improvements.

View Article and Find Full Text PDF

Classical shadows are a powerful method for learning many properties of quantum states in a sample-efficient manner, by making use of randomized measurements. Here we study the sample complexity of learning the expectation value of Pauli operators via "shallow shadows," a recently proposed version of classical shadows in which the randomization step is effected by a local unitary circuit of variable depth t. We show that the shadow norm (the quantity controlling the sample complexity) is expressed in terms of properties of the Heisenberg time evolution of operators under the randomizing ("twirling") circuit-namely the evolution of the weight distribution characterizing the number of sites on which an operator acts nontrivially.

View Article and Find Full Text PDF

The study of X-ray fluorescence (XRF) emission spectra is a powerful technique used in applications that range from biology to cultural heritage. Key objectives of this technique include identification and quantification of elemental traces composing the analyzed sample. However, precise derivation of elemental concentration is often hampered by self-absorption of the XRF signal emitted by light constituents.

View Article and Find Full Text PDF

Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC).

View Article and Find Full Text PDF

Simultaneous positron-emission tomography (PET)-magnetic resonance (MR) imaging is a hybrid technique in oncological hepatic imaging combining soft-tissue and functional contrast of dynamic contrast enhanced MR (DCE-MR) with metabolic information from PET. In this context, respiratory motion represents a major challenge by introducing blurring, artifacts and misregistration in the liver. In this work, we propose a free-breathing 3D non-rigid respiratory motion correction framework for simultaneously acquired DCE-MR and PET data, which makes use of higher spatial resolution MR data to derive motion information used directly during image reconstruction to minimize image blurring and motion artifacts.

View Article and Find Full Text PDF

The dynamics of entanglement in "hybrid" nonunitary circuits (for example, involving both unitary gates and quantum measurements) has recently become an object of intense study. A major hurdle toward experimentally realizing this physics is the need to apply postselection on random measurement outcomes in order to repeatedly prepare a given output state, resulting in an exponential overhead. We propose a method to sidestep this issue in a wide class of nonunitary circuits by taking advantage of spacetime duality.

View Article and Find Full Text PDF

This paper presents a simulation framework for dynamic PET-MR. The main focus of this framework is to provide motion-resolved MR and PET data and ground truth motion information. This can be used in the optimisation and quantitative evaluation of image registration and in assessing the error propagation due to inaccuracies in motion estimation in complex motion-compensated reconstruction algorithms.

View Article and Find Full Text PDF

We study the quantum Hall plateau transition on rectangular tori. As the aspect ratio of the torus is increased, the two-dimensional critical behavior, characterized by a subthermodynamic number of topological states in a vanishing energy window around a critical energy, changes drastically. In the thin-torus limit, the entire spectrum is Anderson localized; however, an extensive number of states retain a Chern number C≠0.

View Article and Find Full Text PDF

Background And Purpose: Quantitative susceptibility mapping (QSM) of the brain has become highly reproducible and has applications in an expanding array of diseases. To translate QSM from bench to bedside, it is important to automate its reconstruction immediately after data acquisition. In this work, a server system that automatically reconstructs QSM and exchange images with the scanner using the DICOM standard is demonstrated using a multi-site, multi-vendor reproducibility study and a large, single-site, multi-scanner image quality review study in a clinical environment.

View Article and Find Full Text PDF

Purpose: To provide nonrigid respiratory motion-corrected DCE-MRI images with isotropic resolution of 1.5 mm, full coverage of abdomen, and covering the entire uptake curve with a temporal resolution of 6 seconds, for the quantitative assessment of hepatic lesions.

Methods: 3D DCE-MRI data were acquired at 3 T during free breathing for 5 minutes using a 3D T -weighted golden-angle radial phase-encoding sequence.

View Article and Find Full Text PDF

Background: Quantitative susceptibility mapping (QSM) is an MRI postprocessing technique that allows quantification of the spatial distribution of tissue magnetic susceptibility in vivo. Contributing sources include iron, blood products, calcium, myelin, and lipid content.

Purpose: To evaluate the reproducibility and consistency of QSM across clinical field strengths of 1.

View Article and Find Full Text PDF