Publications by authors named "Matteo Gorza"

The mitochondrial calcium uniporter channel (MCUC) mediates mitochondrial calcium entry, regulating energy metabolism and cell death. Although several MCUC components have been identified, the molecular basis of mitochondrial calcium signaling networks and their remodeling upon changes in uniporter activity have not been assessed. Here, we map the MCUC interactome under resting conditions and upon chronic loss or gain of mitochondrial calcium uptake.

View Article and Find Full Text PDF

SQSTM1 (sequestosome 1; also known as p62) encodes a multidomain scaffolding protein involved in various key cellular processes, including the removal of damaged mitochondria by its function as a selective autophagy receptor. Heterozygous variants in SQSTM1 have been associated with Paget disease of the bone and might contribute to neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Using exome sequencing, we identified three different biallelic loss-of-function variants in SQSTM1 in nine affected individuals from four families with a childhood- or adolescence-onset neurodegenerative disorder characterized by gait abnormalities, ataxia, dysarthria, dystonia, vertical gaze palsy, and cognitive decline.

View Article and Find Full Text PDF

Diabetes mellitus and neurodegeneration are common diseases for which shared genetic factors are still only partly known. Here, we show that loss of the BiP (immunoglobulin heavy-chain binding protein) co-chaperone DNAJC3 leads to diabetes mellitus and widespread neurodegeneration. We investigated three siblings with juvenile-onset diabetes and central and peripheral neurodegeneration, including ataxia, upper-motor-neuron damage, peripheral neuropathy, hearing loss, and cerebral atrophy.

View Article and Find Full Text PDF

Subretinal injections with glial cell line-derived neurotrophic factor (GDNF) rescue morphology as well as function of rod cells in mouse and rat animal models of retinitis pigmentosa. At the same time, it is postulated that this effect is indirect, mediated by activation of retinal Müller glial (RMG) cells. Here, we show that Cyr61/CCN1, one of the secreted proteins up-regulated in primary RMG after glial cell line-derived neurotrophic factor stimulation, provides neuroprotective and pro-survival capacities: Recombinant Cyr61 significantly reduced photoreceptor (PR) cells death in organotypic cultures of Pde6b(rd1) retinas.

View Article and Find Full Text PDF

Mutations in the orphan gene C19orf12 were identified as a genetic cause in a subgroup of patients with NBIA, a neurodegenerative disorder characterized by deposits of iron in the basal ganglia. C19orf12 was shown to be localized in mitochondria, however, nothing is known about its activity and no functional link exists to the clinical phenotype of the patients. This situation led us to investigate the effects of C19orf12 down-regulation in the model organism Drosophila melanogaster.

View Article and Find Full Text PDF

Analyzing the molecular architecture of native multiprotein complexes via biochemical methods has so far been difficult and error prone. Protein complex isolation by affinity purification can define the protein repertoire of a given complex, yet, it remains difficult to gain knowledge of its substructure or modular composition. Here, we introduce SDS concentration gradient induced decomposition of protein complexes coupled to quantitative mass spectrometry and in silico elution profile distance analysis.

View Article and Find Full Text PDF

Defects of mitochondrial oxidative phosphorylation (OXPHOS) are associated with a wide range of clinical phenotypes and time courses. Combined OXPHOS deficiencies are mainly caused by mutations of nuclear genes that are involved in mitochondrial protein translation. Due to their genetic heterogeneity it is almost impossible to diagnose OXPHOS patients on clinical grounds alone.

View Article and Find Full Text PDF

Whole-exome sequencing and autozygosity mapping studies, independently performed in subjects with defective combined mitochondrial OXPHOS-enzyme deficiencies, identified a total of nine disease-segregating FBXL4 mutations in seven unrelated mitochondrial disease families, composed of six singletons and three siblings. All subjects manifested early-onset lactic acidemia, hypotonia, and developmental delay caused by severe encephalomyopathy consistently associated with progressive cerebral atrophy and variable involvement of the white matter, deep gray nuclei, and brainstem structures. A wide range of other multisystem features were variably seen, including dysmorphism, skeletal abnormalities, poor growth, gastrointestinal dysmotility, renal tubular acidosis, seizures, and episodic metabolic failure.

View Article and Find Full Text PDF

Background: Next generation sequencing has become the core technology for gene discovery in rare inherited disorders. However, the interpretation of the numerous sequence variants identified remains challenging. We assessed the application of exome sequencing for diagnostics in complex I deficiency, a disease with vast genetic heterogeneity.

View Article and Find Full Text PDF