Publications by authors named "Matteo Giuberti"

Full-body motion capture typically requires sensors/markers to be placed on each rigid body segment, which results in long setup times and is obtrusive. The number of sensors/markers can be reduced using deep learning or offline methods. However, this requires large training datasets and/or sufficient computational resources.

View Article and Find Full Text PDF

Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture systems, it becomes possible to measure kinematics in any environment. However, kinetic information could not be provided with such technology.

View Article and Find Full Text PDF

Human movement analysis has become easier with the wide availability of motion capture systems. Inertial sensing has made it possible to capture human motion without external infrastructure, therefore allowing measurements in any environment. As high-quality motion capture data is available in large quantities, this creates possibilities to further simplify hardware setups, by use of data-driven methods to decrease the number of body-worn sensors.

View Article and Find Full Text PDF

Recently, we have proposed a body-sensor-network-based approach, composed of a few body-worn wireless inertial nodes, for automatic assignment of Unified Parkinson's Disease Rating Scale (UPDRS) scores in the following tasks: Leg agility (LA), Sit-to-Stand (S2S), and Gait (G). Unlike our previous works and the majority of the published studies, where UPDRS tasks were the sole focus, in this paper, we carry out a comparative investigation of the LA, S2S, and G tasks. In particular, after providing an accurate description of the features identified for the kinematic characterization of the three tasks, we comment on the correlation between the most relevant kinematic parameters and the UPDRS scoring.

View Article and Find Full Text PDF

In this study, we first characterize the sit-to-stand (S2S) task, which contributes to the evaluation of the degree of severity of the Parkinson's disease (PD), through kinematic features, which are then linked to the Unified Parkinson's disease rating scale (UPDRS) scores. We propose to use a single body-worn wireless inertial node placed on the chest of a patient. The experimental investigation is carried out considering 24 PD patients, comparing the obtained results directly with the kinematic characterization of the leg agility (LA) task performed by the same set of patients.

View Article and Find Full Text PDF