Publications by authors named "Matteo Gabba"

The passive permeability of cell membranes is of key importance in biology, biomedical research and biotechnology as it determines the extent to which various molecules such as drugs, products of metabolism, and toxins can enter or leave the cell unaided by dedicated transport proteins. The quantification of passive solute permeation is possible with radio-isotope distribution experiments, spectroscopic measurements and molecular dynamics simulations. This protocol describes stopped-flow fluorimetry measurements performed on lipid vesicles and living yeast cells to estimate the osmotic permeability of water and solutes across (bio)membranes.

View Article and Find Full Text PDF

We modeled the relaxation dynamics of (lipid) vesicles upon osmotic upshift, taking into account volume variation, chemical reaction kinetics, and passive transport across the membrane. We focused on the relaxation kinetics upon addition of impermeable osmolytes such as KCl and membrane-permeable solutes such as weak acids. We studied the effect of the most relevant physical parameters on the dynamic behavior of the system, as well as on the relaxation rates.

View Article and Find Full Text PDF

The investigation and understanding of the folding mechanism of multidomain proteins is still a challenge in structural biology. The use of single-molecule Förster resonance energy transfer offers a unique tool to map conformational changes within the protein structure. Here, we present a study following denaturant-induced unfolding transitions of yeast phosphoglycerate kinase by mapping several inter- and intradomain distances of this two-domain protein, exhibiting a quite heterogeneous behavior.

View Article and Find Full Text PDF

We present a fluorescence-based approach for determination of the permeability of small molecules across the membranes of lipid vesicles and living cells. With properly designed experiments, the method allows us to assess the membrane physical properties both in vitro and in vivo. We find that the permeability of weak acids increases in the order of benzoic > acetic > formic > lactic, both in synthetic lipid vesicles and the plasma membrane of Saccharomyces cerevisiae, but the permeability is much lower in yeast (one to two orders of magnitude).

View Article and Find Full Text PDF

The addition of high amounts of chemical denaturants, salts, viscosity enhancers or macro-molecular crowding agents has an impact on the physical properties of buffer solutions. Among others, the (microscopic) viscosity, the refractive index, the dielectric constant, and the ionic strength can be affected. Here, we systematically evaluate the importance of solvent characteristics with respect to single-molecule FRET (smFRET) data.

View Article and Find Full Text PDF

Here, we present a comparative method for the accurate determination of fluorescence quantum yields (QYs) by fluorescence correlation spectroscopy. By exploiting the high sensitivity of single-molecule spectroscopy, we obtain the QYs of samples in the microliter range and at (sub)nanomolar concentrations. Additionally, in combination with fluorescence lifetime measurements, our method allows the quantification of both static and collisional quenching constants.

View Article and Find Full Text PDF

Förster resonance energy transfer (FRET) is an important tool for studying the structural and dynamical properties of biomolecules. The fact that both the internal dynamics of the biomolecule and the movements of the biomolecule-attached dyes can occur on similar timescales of nanoseconds is an inherent problem in FRET studies. By performing single-molecule FRET-filtered lifetime measurements, we are able to characterize the amplitude of the motions of fluorescent probes attached to double-stranded DNA standards by means of flexible linkers.

View Article and Find Full Text PDF

Over the last few decades, a view has emerged showing that multidomain enzymes are biological machines evolved to harness stochastic kicks of solvent particles into highly directional functional motions. These intrinsic motions are structurally encoded, and Nature makes use of them to catalyze chemical reactions by means of ligand-induced conformational changes and states redistribution. Such mechanisms align reactive groups for efficient chemistry and stabilize conformers most proficient for catalysis.

View Article and Find Full Text PDF

Cytoglobin (Cygb) was recently discovered in the human genome and localized in different tissues. It was suggested to play tissue-specific protective roles, spanning from scavenging of reactive oxygen species in neurons to supplying oxygen to enzymes in fibroblasts. To shed light on the functioning of such versatile machinery, we have studied the processes supporting transport of gaseous heme ligands in Cygb.

View Article and Find Full Text PDF

Single-molecule Förster resonance energy transfer (FRET) measurements with phosphoglycerate kinase from yeast were performed at different concentrations of guanidine hydrochloride. From these steady-state measurements we obtained FRET efficiency histograms characterizing structural properties of individual proteins at different stages between the native and the fully unfolded state. Native proteins exhibit a slightly more expanded structure under buffer conditions without denaturant as compared to conditions with denaturant.

View Article and Find Full Text PDF