Publications by authors named "Matteo Ferroni"

Human mesenchymal stromal cells (hMSCs), whether used alone or together with three-dimensional scaffolds, are the best-studied postnatal stem cells in regenerative medicine. In this study, innovative composite scaffolds consisting of a core-shell architecture were seeded with bone-marrow-derived hMSCs (BM-hMSCs) and tested for their biocompatibility and remarkable capacity to promote and support bone regeneration and mineralization. The scaffolds were prepared by grafting three different amounts of gelatin-chitosan (CH) hydrogel into a 3D-printed polylactic acid (PLA) core (PLA-CH), and the mechanical and degradation properties were analyzed.

View Article and Find Full Text PDF

This study investigates the viability of developing chitosan-based hydrogels derived from waste shrimp shells for the removal of methylene blue and methyl orange, thereby transforming food waste into advanced materials for environmental remediation. Despite chitosan-based adsorbents being conventionally considered ideal for the removal of negative pollutants, through targeted functionalization with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) at varying concentrations, we successfully enhance the hydrogels' efficacy in also adsorbing positively charged adsorbates. Specifically, the incorporation of PEDOT:PSS at a concentration of 10% / emerges as a critical factor in facilitating the robust adsorption of dyes.

View Article and Find Full Text PDF

Scaffolds for tissue engineering are expected to respond to a challenging combination of physical and mechanical requirements, guiding the research towards the development of novel hybrid materials. This study introduces innovative three-dimensional bioresorbable scaffolds, in which a stiff poly(lactic acid) lattice structure is meant to ensure temporary mechanical support, while a bioactive gelatin-chitosan hydrogel is incorporated to provide a better environment for cell adhesion and proliferation. The scaffolds present a core-shell structure, in which the lattice core is realized by additive manufacturing, while the shell is nested throughout the core by grafting and crosslinking a hydrogel forming solution.

View Article and Find Full Text PDF

Over the years, FIB-SEM tomography has become an extremely important technique for the three-dimensional reconstruction of microscopic structures with nanometric resolution. This paper describes in detail the steps required to perform this analysis, from the experimental setup to the data analysis and final reconstruction. To demonstrate the versatility of the technique, a comprehensive list of applications is also summarized, ranging from batteries to shale rocks and even some types of soft materials.

View Article and Find Full Text PDF

Background: Dental technicians are at high risk of pneumoconiosis, usually driven by inhalation of mixed dusts, including metals. An etiological diagnosis is not easy to be performed, particularly in advanced stages.

Case Presentation: We describe the case of an early pneumoconiosis occurring in a 47-year-old dental technician who developed respiratory symptoms shortly after beginning work.

View Article and Find Full Text PDF

Gelatin-dextran hydrogel scaffolds (G-PEG-Dx) were evaluated for their ability to activate the bone marrow human mesenchymal stromal cells (BM-hMSCs) towards mineralization. G-PEG-Dx1 and G-PEG-Dx2, with identical composition but different architecture, were seeded with BM-hMSCs in presence of fetal bovine serum or human platelet lysate (hPL) with or without osteogenic medium. G-PEG-Dx1, characterized by a lower degree of crosslinking and larger pores, was able to induce a better cell colonization than G-PEG-Dx2.

View Article and Find Full Text PDF

The transport of H, He, CO, O, CH, and N at three temperatures up to 65 °C was measured in dense, thick composite films formed by amorphous Polysulfone (PSf) and particles of the size-selective zeolitic imidazolate framework 8 (ZIF-8) at loadings up to 16 wt%. The morphological and structural properties of the membranes were analyzed via SEM and density measurement. The addition of ZIF-8 to PSf enhances the H and He permeabilities up to 480% with respect to the pure polymer, while the ideal H/CO and He/CO selectivities of MMMs reach values up to 30-40% higher than those of pure PSf.

View Article and Find Full Text PDF

Interactive relationships among metabolism, mitochondrial dysfunction and inflammation at skeletal muscle level play a key role in the pathogenesis of disorders related to oxidative stress. Mitochondrial dysfunction and oxidative stress result in cellular energy deficiency, inflammation and cell death inducing a vicious cycle that promotes muscle wasting. The histidine-containing dipeptides, carnosine and anserine, are carbonyl scavengers whose cytoprotective contributions extend beyond the antioxidant defence, but the physiological meaning of these capacities is actually limited.

View Article and Find Full Text PDF

Silicon is one of the most interesting candidates for plasmon-free surface-enhaced Raman scattering (SERS), because of its high-refractive index and thermal stability. However, here we demonstrate that the alleged thermal stability of silicon nanoshells irradiated by conventional Raman laser cannot be taken for granted. We investigated the opto-thermal behavior of SiO/Si core/shell microbeads (Si-rex) irradiated with three common Raman laser sources (λ = 532, 633, 785 nm) under real working conditions.

View Article and Find Full Text PDF

Metal oxide 1D nanowires are probably the most promising structures to develop cheap stable and selective chemical sensors. The purpose of this contribution is to review almost two-decades of research activity at the Sensor Lab Brescia on their preparation during by vapor solid (-type In₂O₃, ZnO), vapor liquid solid (-type SnO and -type NiO) and thermal evaporation and oxidation (-type ZnO, WO₃ and -type CuO) methods. For each material we've assessed the chemical sensing performance in relation to the preparation conditions and established a rank in the detection of environmental and industrial pollutants: SnO₂ nanowires were effective in DMMP detection, ZnO nanowires in NO₂, acetone and ethanol detection, WO₃ for ammonia and CuO for ozone.

View Article and Find Full Text PDF

The three-dimensional tomographic reconstruction of a biological sample, namely collagen fibrils in human dermal tissue, was obtained from a set of projection-images acquired in the Scanning Electron Microscope. A tailored strategy for the transmission imaging mode was implemented in the microscope and proved effective in acquiring the projections needed for the tomographic reconstruction. Suitable projection alignment and Compressed Sensing formulation were used to overcome the limitations arising from the experimental acquisition strategy and to improve the reconstruction of the sample.

View Article and Find Full Text PDF

This paper reports an experimental investigation of surface-enhanced Raman scattering in high-density Si nanowire arrays obtained by electroless etching. A direct relationship between light trapping capabilities of Si nanowires and enhanced Raman scattering was demonstrated. Optimized arrays allowed for a remarkable increase of Raman sensitivity in comparison to reference planar samples.

View Article and Find Full Text PDF

Zinc oxide (ZnO, n-type) and copper oxide (CuO, p-type) nanowires have been synthesized and preliminarily investigated as innovative materials for the fabrication of a proof-of-concept thermoelectric device. The Seebeck coefficients, electrical conductivity and thermoelectric power factors (TPF) of both semiconductor materials have been determined independently using a custom experimental set-up, leading to results in agreement with available literature with potential improvement. Combining bundles of ZnO and CuO nanowires in a series of five thermocouples on alumina leads to a macroscopic prototype of a planar thermoelectric generator (TEG) unit.

View Article and Find Full Text PDF
Article Synopsis
  • Cisplatin (CisPt) is a chemotherapy drug that can cause muscle atrophy, and this study investigates how it triggers autophagy in muscle cells (C2C12 myotubes).
  • Early signs of autophagy appear within 4-8 hours of treatment, with significant cellular damage by 24 hours but still before visible muscle wasting occurs.
  • Taurine treatment shows protective effects by preventing muscle atrophy, preserving cell structure, and could be a potential strategy for maintaining muscle health during CisPt therapy, warranting further research.
View Article and Find Full Text PDF

In this work we report on metal oxide (MOX) based gas sensors, presenting the work done at the SENSOR laboratory of the CNR-IDASC and University of Brescia, Italy since the 80s up to the latest results achieved in recent times. In particular we report the strategies followed at SENSOR during these 30 years to increase the performance of MOX sensors through the development of different preparation techniques, from Rheotaxial Growth Thermal Oxidation (RGTO) to nanowire technology to address sensitivity and stability, and the development of electronic nose systems and pattern recognition techniques to address selectivity. We will show the obtained achievement in the context of selected applications such as safety and security and food quality control.

View Article and Find Full Text PDF

We investigated the polarization dependence of the near-band-edge photoluminescence in ZnO strain-free nanowires grown by vapor phase technique. The emission is polarized perpendicular to the nanowire axis with a large polarization ratio (as high as 0.84 at 4.

View Article and Find Full Text PDF

Recent advances in nanotechnology have allowed significant progress in utilising cutting-edge techniques associated with nanomaterials and nano-fabrication to expand the scope and capability of biosensors to a new level of novelty and functionality. The aim of this work was the development and characterisation of conductive polyaniline (PANI) nanostructures for applications in electrochemical biosensing. We explore a simple, inexpensive and fast route to grow PANI nanotubes, arranged in an ordered structure directly on an electrode surface, by electrochemical polymerisation using alumina nanoporous membranes as a 'nano-mould'.

View Article and Find Full Text PDF

A simple and large-area scalable methodology has been set up for direct integration of metal oxide nanowire bundles into a functional device for gas sensing. It is based on sequential application of two consolidated techniques, namely high temperature vapour transport and condensation for fabrication of metal oxide nanowires, and wet etching of a sacrificial layer. The alumina substrate patterned with a silicon dioxide sacrificial layer does not influence the growth of nanowires and remains unaltered under the high temperature process.

View Article and Find Full Text PDF

SERS you right: The plasmon heating of gold nanoshells is exploited to yield the local conversion of amorphous TiO(2) into anatase on the surface of polymeric colloidal crystals (see scheme). The resulting Au/TiO(2) spots are active substrates for surface-enhanced Raman spectroscopy and allow surface reactions and processes to be followed directly on-site.

View Article and Find Full Text PDF

Aluminium (Al) is a ubiquitous metal that is potentially toxic to the brain. Its effects on other fundamental organs are not completely understood. This morphological in vivo study sought to compare sublethal hepatotoxic changes and Al deposition in adult mice that orally ingested Al sulphate daily for 10 months, in age matched control mice that drank tap water and in senescent mice (24 months old).

View Article and Find Full Text PDF