We introduce a data-driven epistatic model of protein evolution, capable of generating evolutionary trajectories spanning very different time scales reaching from individual mutations to diverged homologs. Our in silico evolution encompasses random nucleotide mutations, insertions and deletions, and models selection using a fitness landscape, which is inferred via a generative probabilistic model for protein families. We show that the proposed framework accurately reproduces the sequence statistics of both short-time (experimental) and long-time (natural) protein evolution, suggesting applicability also to relatively data-poor intermediate evolutionary time scales, which are currently inaccessible to evolution experiments.
View Article and Find Full Text PDFDuring their evolution, proteins explore sequence space via an interplay between random mutations and phenotypic selection. Here, we build upon recent progress in reconstructing data-driven fitness landscapes for families of homologous proteins, to propose stochastic models of experimental protein evolution. These models predict quantitatively important features of experimentally evolved sequence libraries, like fitness distributions and position-specific mutational spectra.
View Article and Find Full Text PDF