Publications by authors named "Matteo A Russo"

Moving from the earlier periods in which the lungs were believed to represent sterile environments, our knowledge on the lung microbiota has dramatically increased, from the first descriptions of the microbial communities inhabiting the healthy lungs and the definition of the ecological rules that regulate its composition, to the identification of the changes that occur in pathological conditions. Despite the limitations of lung as a microbiome reservoir due to the low microbial biomass and abundance, defining its microbial composition and function in the upper and lower airways may help understanding the impact on local homeostasis and its disruption in lung diseases. In particular, the understanding of the metabolic and immune significance of microbes, their presence or lack thereof, in health and disease states could be valuable in development of novel druggable targets in disease treatments.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent research indicates that the gut microbiome plays a crucial role in cardiovascular health by activating immune and inflammatory responses, impacting various CVDs.
  • * This review focuses on how metabolites from gut microbiota, particularly those derived from tryptophan, interact with immune systems, potentially leading to new, microbiome-based strategies for CVD treatment.
View Article and Find Full Text PDF

Epicardial epithelial-to-mesenchymal transition (EMT) plays a pivotal role in both heart development and injury response and involves dynamic cellular changes that are essential for cardiogenesis and myocardial repair. Specifically, epicardial EMT is a crucial process in which epicardial cells lose polarity, migrate into the myocardium, and differentiate into various cardiac cell types during development and repair. Importantly, following EMT, the epicardium becomes a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis and contribute to cardiac remodeling after injury.

View Article and Find Full Text PDF

Cancer cells modulate their metabolism, creating an acidic microenvironment that, in turn, can favor tumor progression and chemotherapy resistance. Tumor cells adopt strategies to survive a drop in extracellular pH (pHe). In the present manuscript, we investigated the contribution of mitochondrial sirtuin 3 (SIRT3) to the adaptation and survival of cancer cells to a low pHe.

View Article and Find Full Text PDF
Article Synopsis
  • Darier disease (DD) is an autosomal dominant skin disorder linked to the ATP2A2 gene, primarily affecting keratinocytes, but has shown potential connections to heart issues.
  • Recent findings indicate that a specific gene variant may lead to cardiac problems in DD patients, where disconnection of skin cells parallels separation in heart cells, resulting in both skin and heart-related symptoms decades apart.
  • Clinical symptoms include skin lesions, chest pain, muscle fatigue, and arrhythmias, with treatment using aminophylline showing promise in alleviating these cardiac symptoms by enhancing specific protein activity.
View Article and Find Full Text PDF

Rotenone is a pesticide used in research for its ability to induce changes similar, in vivo and in vitro, to those observed in Parkinson's disease (PD). This includes a selective death of dopaminergic neurons in the substantia nigra. Nonetheless, the precise mechanism through which rotenone modifies structure and function of neurons remains unclear.

View Article and Find Full Text PDF

Background: The limited ability of enzyme replacement therapy (ERT) in removing globotriaosylceramide from cardiomyocytes is recognized for advanced Fabry disease cardiomyopathy (FDCM). Prehypertrophic FDCM is believed to be cured or stabilized by ERT. However, no pathologic confirmation is available.

View Article and Find Full Text PDF

Introduction: Fabry's disease (FD) is a genetic X-linked systemic and progressive rare disease characterized by the accumulation of globotriaosylceramide (GB3) into the lysosomes of many tissues. FD is due to loss-of-function mutations of α-galactosidase, a key-enzyme for lysosomal catabolism of glycosphingolipids, which accumulate as glycolipid bodies (GB). In homozygous males the progressive deposition of GB3 into the cells leads to clinical symptoms in CNS, skin, kidney, etc.

View Article and Find Full Text PDF

Oxidative stress and impaired mitophagy are the hallmarks of cardiomyocyte senescence. Specifically, a decrease in mitophagic flux leads to the accumulation of damaged mitochondria and the development of senescence through increased ROS and other mediators. In this study, we describe the preventive role of A5, a mix of polyphenols and other micronutrients, in doxorubicin (DOXO)-induced senescence of H9C2 cells.

View Article and Find Full Text PDF

The functional interdependencies between the molecular components of a biological process demand for a network medicine platform that integrates systems biology and network science, to explore the interactions among biological components in health and disease. Access to large-scale omics datasets (genomics, transcriptomics, proteomics, metabolomics, metagenomics, phenomics, etc.) has significantly advanced our opportunity along this direction.

View Article and Find Full Text PDF

Cancer cells show increased glutamine consumption. The glutaminase (GLS) enzyme controls a limiting step in glutamine catabolism. Breast tumors, especially the triple-negative subtype, have a high expression of GLS.

View Article and Find Full Text PDF

Background: Fabry disease cardiomyopathy (FDCM) has manifested some resistance to enzyme replacement therapy (ERT), particularly in its advanced phase. Recently, myocardial inflammation of autoimmune origin has been demonstrated in FDCM.

Aims: The objective of this study was the assessment of circulating anti-globotriaosylceramide (GB3) antibodies as potential biomarkers of myocardial inflammation in FDCM, defined by the additional presence of ≥CD3+ 7 T lymphocytes/low-power field associated with focal necrosis of adjacent myocytes.

View Article and Find Full Text PDF

Background: The pathology of conduction tissue (CT) and relative arrhythmias in living subjects with cardiac amyloid have never been reported.

Aims: To report CT pathology and its arrhythmic correlations in human cardiac amyloidosis.

Methods And Results: In 17 out of 45 cardiac amyloid patients, a left ventricular endomyocardial biopsy included conduction tissue sections.

View Article and Find Full Text PDF

Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others.

View Article and Find Full Text PDF

Background: The efficacy of enzyme replacement therapy (ERT) in mobilizing globotryaosylceramide (GB-3) from Fabry cardiomyocytes is limited. The mechanism involved is still obscure. Methods: Assessment of M6Pr, M6Pr-mRNA, and Ubiquitin has been obtained by Western blot analysis and real-time PCR of frozen endomyocardial biopsy samples, from 17 pts with FD, various degree of left ventricular hypertrophy, and maximal wall thickening (MWT) from 11.

View Article and Find Full Text PDF

Herein, we describe histological mobilization of light chain cardiac amyloid documented by sequential left ventricular endomyocardial biopsies. These findings were associated with positive remodelling of cardiomyocytes and of restrictive cardiomyopathy resulting from 14 courses of chemotherapy over 17 years of time. Histological and ultrastructural findings of light chain cardiac amyloid removal led to increase in cardiomyocyte dimension and electrocardiogram voltages, reduction of biventricular wall thickness with improvement of left ventricular diastolic function, and NYHA class shifting from III to I.

View Article and Find Full Text PDF

The aims of our study are to: (i) investigate the ability of nicotine to modulate the expression level of inflammatory cytokines in A549 cells infected with SARS-CoV-2; (ii) elucidate the ultrastructural features caused by the combination nicotine+SARS-CoV-2; and (iii) demonstrate the mechanism of action. In this study, A549 cells pretreated with nicotine were either exposed to LPS or poly(I:C), or infected with SARS-CoV-2. Treated and untreated cells were analyzed for cytokine production, cytotoxicity, and ultrastructural modifications.

View Article and Find Full Text PDF

Aims: Long-term results of the Tailored IMmunosuppression in virus-negative Inflammatory Cardiomyopathy (TIMIC) trial protocol have been evaluated.

Methods And Results: Eighty-five patients with endomyocardial biopsy-proven virus-negative chronic inflammatory cardiomyopathy were enrolled in the randomized, double-blind, placebo-controlled TIMIC trial and received prednisone and azathioprine (n = 43) vs. placebo (n = 42) for 6 months.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT), a physiological process during embryogenesis, can become pathological in the presence of different driving forces. Reduced oxygen tension or hypoxia is one of these forces, triggering a large number of molecular pathways with aberrant EMT induction, resulting in cancer and fibrosis onset. Both hypoxia-induced factors, HIF-1α and HIF-2α, act as master transcription factors implicated in EMT.

View Article and Find Full Text PDF

Background: The impact of enzyme replacement therapy (ERT) on cardiomyocytes and intestinal cells, affected by Fabry disease (FD), is still unclear. Methods: Six patients with FD, including five family members with GLA mutation c.666delC and one with GLA mutation c.

View Article and Find Full Text PDF

Different cell types belonging to the innate and adaptive immune system play mutually non-exclusive roles during the different phases of the inflammatory-reparative response that occurs following myocardial infarction. A timely and finely regulation of their action is fundamental for the process to properly proceed. The high-mobility group box 1 (HMGB1), a highly conserved nuclear protein that in the extracellular space can act as a damage-associated molecular pattern (DAMP) involved in a large variety of different processes, such as inflammation, migration, invasion, proliferation, differentiation, and tissue regeneration, has recently emerged as a possible regulator of the activity of different immune cell types in the distinct phases of the inflammatory reparative process.

View Article and Find Full Text PDF