Publications by authors named "Mattarollo S"

Intratumoural administration of unmethylated cytosine-phosphate-guanine motifs (CpG) to stimulate toll-like receptor (TLR)-9 has been shown to induce tumour regression in preclinical studies and some efficacy in the clinic. Because activated natural killer T (NKT) cells can cooperate with pattern-recognition via TLRs to improve adaptive immune responses, we assessed the impact of combining a repeated dosing regimen of intratumoural CpG with a single intratumoural dose of the NKT cell agonist α-galactosylceramide (α-GalCer). The combination was superior to CpG alone at inducing regression of established tumours in several murine tumour models, primarily mediated by CD8 T cells.

View Article and Find Full Text PDF

Natural killer (NK) cells play critical roles in protection against hematological malignancies but can acquire a dysfunctional state, which limits antitumor immunity. However, the underlying reasons for this impaired NK cell function remain to be uncovered. We found that NK cells in aggressive B-cell lymphoma underwent substantial transcriptional reprogramming associated with increased lipid metabolism, including elevated expression of the transcriptional regulator peroxisome activator receptor-γ (PPAR-γ).

View Article and Find Full Text PDF

Invariant natural killer T (iNKT) cells are a subset of lymphocytes with immune regulatory activity. Their ability to bridge the innate and adaptive immune systems has been studied using the glycolipid ligand α-galactosylceramide (αGC). To better harness the immune adjuvant properties of iNKT cells to enhance priming of antigen-specific CD8 T cells, we encapsulated both αGC and antigen in a Clec9a-targeted nanoemulsion (TNE) to deliver these molecules to cross-presenting CD8 dendritic cells (DC).

View Article and Find Full Text PDF

Neurotransmitters and neurochemicals can act on lymphocytes by binding to receptors expressed by lymphocytes. This review describes lymphocyte expression of receptors for a selection of neurotransmitters and neurochemicals, the anatomical locations where lymphocytes can interact with neurotransmitters, and the effects of the neurotransmitters on lymphocyte function. Implications for health and disease are also discussed.

View Article and Find Full Text PDF

"High-risk" human papillomaviruses (HPV) infect keratinocytes of squamous epithelia. The HPV16E7 protein induces epithelial hyperplasia by binding Rb family proteins and disrupting cell cycle termination. Murine skin expressing HPV16E7 as a transgene from a keratin 14 promoter (K14.

View Article and Find Full Text PDF

Tumor biopsy is the gold standard for the assessment of clinical biomarkers for treatment. However, tumors change dynamically in response to therapy, and there remains a need for a more representative biomarker that can be assayed over the course of treatment. Circulating tumor cells (CTCs) may provide clinically important and comprehensive tumoral information that is predictive of treatment response and outcome.

View Article and Find Full Text PDF

Chemokines and their receptors play an important role in the recruitment, activation and differentiation of immune cells. The chemokine receptor, CXCR3, and its ligands, CXCL9, CXCL10, and CXCL11 are key immune chemoattractants during interferon-induced inflammatory responses. Inflammation of the skin resulting from infections or autoimmune disease drives expression of CXCL9/10/11 and the subsequent recruitment of effector, CXCR3 T cells from the circulation.

View Article and Find Full Text PDF

Immunomodulatory therapies can effectively control haematological malignancies. Previously we reported the effectiveness of combination immunotherapies that centre on 4-1BB-targeted co-stimulation of CD8 + T cells, particularly when simultaneously harnessing the immune adjuvant properties of Natural Killer T (NKT) cells. The objective of this study was to assess the effectiveness of agonistic anti-4-1BB antibody-based combination therapy against two aggressive forms of acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Monocytosis is considered a poor prognostic factor for many cancers, including B cell lymphomas. The mechanisms by which different monocyte subsets support the growth of lymphoma is poorly understood. Using a pre-clinical mouse model of B cell non-Hodgkin's lymphoma (B-NHL), we investigated the impact of tumor progression on circulating monocyte levels, subset distribution and their activity, with a focus on immune suppression.

View Article and Find Full Text PDF

Chemokines regulate tissue immunity by recruiting specific subsets of immune cells. Mice expressing the E7 protein of human papilloma virus 16 as a transgene from a keratin 14 promoter (K14.E7) show increased epidermal and dermal lymphocytic infiltrates, epidermal hyperplasia, and suppressed local immunity.

View Article and Find Full Text PDF

Natural killer (NK) cells are a critical component in the innate immune response against disease. NK cell function is tightly regulated by specific cytokine and activation/inhibitory receptor signalling, leading to diverse effector responses. Like all living cells, energy metabolism is a fundamental requirement for NK cell activation and survival.

View Article and Find Full Text PDF

β-Adrenergic receptor (βAR) signaling regulates many physiological processes, including immune system responses. There is growing evidence also for βAR-induced modulation of cancer growth and metastasis. In the Eμ-myc mouse model of B-cell lymphoma, we investigated the effects of chronically elevated βAR signaling on lymphoma progression and antitumor immunity, as well as the impact on cancer immunotherapy.

View Article and Find Full Text PDF

Invariant natural killer T (iNKT) cells are a unique innate T lymphocyte population that possess cytolytic properties and profound immunoregulatory activities. iNKT cells play an important role in the immune surveillance of blood cancers. They predominantly recognize glycolipid antigens presented on CD1d, but their activation and cytolytic activities are not confined to CD1d expressing cells.

View Article and Find Full Text PDF

Chronic lymphocytic leukaemia (CLL) is the most common adult leukaemia and, in some patients, is accompanied by resistance to both chemotherapeutics and immunotherapeutics. In this review we will discuss the role of tumour associated macrophages (TAMs) in promoting CLL cell survival and resistance to immunotherapeutics. In addition, we will discuss mechanisms by which TAMs suppress T-cell mediated antitumour responses.

View Article and Find Full Text PDF

Combinations of mAbs that target various components of T-cell activation/inhibition may work synergistically to improve antitumor immunity against cancer. In this study, we investigated the therapeutic potential of combining an anticancer vaccination strategy with antibodies targeting an immune stimulatory (4-1BB) and immune inhibitory (PD-1) receptor, in a preclinical model of spontaneously arising c-Myc-driven B-cell lymphoma. In Eμ-myc transgenic mice, we reveal that 4-1BB agonistic mAb treatment alone was sufficient to drive antitumor immunity and prevent disease progression in 70% of mice.

View Article and Find Full Text PDF

Resistance to therapeutic antibodies in chronic lymphocytic leukaemia (CLL) is common. In this study, we show that therapeutic antibodies against CD62L (CD62L-Ab) or CD20 (obinutuzumab) were able to induce antibody-dependent cell-mediated cytotoxicity (ADCC) and phagocytosis (ADP) in primary cultures of CLL cells. CLL cells derived from patients with active disease requiring treatment displayed resistance to these antibodies, whereas patients with stable disease were sensitive.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia. While therapeutic antibodies show clinical activity in CLL patients, resistance inevitably develops resulting in treatment failure. Identifying mechanisms of antibody resistance and methods to reduce resistance would be valuable in managing CLL.

View Article and Find Full Text PDF

Immunomodulatory therapies can effectively control haematological malignancies by promoting antitumour immunity. Previously, we reported transient growth of poorly immunogenic murine non-Hodgkin B-cell lymphomas (B-NHL) by targeting natural killer T (NKT) cells with a therapeutic vaccine approach. Therapeutic efficacy was highly dependent on the ability of the vaccine to provoke rapid interferon-gamma (IFNγ) production from NKT and NK cells.

View Article and Find Full Text PDF

The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called "damage-associated molecular patterns" (DAMPs).

View Article and Find Full Text PDF

It has previously been shown that expression of human papillomavirus type 16 (HPV) E7 in epidermis causes hyperplasia and chronic inflammation, characteristics of pre-malignant lesions. Importantly, E7-expressing epidermis is strongly immune suppressed and is not rejected when transplanted onto immune competent mice. Professional antigen presenting cells are considered essential for initiation of the adaptive immune response that results in graft rejection.

View Article and Find Full Text PDF

Harnessing the immune adjuvant properties of natural killer T (NKT) cells is an effective strategy to generate anticancer immunity. The objective of this study was to increase the potency and durability of vaccine-induced immunity against B cell lymphoma by combining α-galactosylceramide (α-GalCer)-loaded tumor cell vaccination with an agonistic antibody targeting the immune checkpoint molecule 4-1BB (CD137). We observed potent synergy when combining vaccination and anti-4-1BB antibody treatment resulting in significantly enhanced survival of mice harboring Eμ-myc tumors, including complete eradication of lymphoma in over 50% of mice.

View Article and Find Full Text PDF

Human papillomaviruses (HPVs) have evoked numerous mechanisms to subvert host innate immunity and establish a local immunosuppressive environment to facilitate persistent virus infection. Topical application of 2,4-dinitrochlorobenzene (DNCB) was speculated to overcome this immunosuppressive environment and was employed in the immunotherapy of HPV-associated lesions. We have previously shown that DNCB treatment of skin expressing HPV16.

View Article and Find Full Text PDF

Persistent infection with high-risk human papillomaviruses (HPV) causes epithelial hyperplasia that can progress to cancer and is thought to depend on immunosuppressive mechanisms that prevent viral clearance by the host. IL-17 is a cytokine with diverse functions in host defense and in the pathology of autoimmune disorders, chronic inflammatory diseases, and cancer. We analyzed biopsies from patients with HPV-associated cervical intraepithelial neoplasia grade 2/3 and murine skin displaying HPV16 E7 protein-induced epithelial hyperplasia, which closely models hyperplasia in chronic HPV lesions.

View Article and Find Full Text PDF
Article Synopsis
  • - The skin serves as a complex immunological barrier, balancing protection against pathogens and tolerance to harmless substances.
  • - It houses a mix of immunosuppressive and active immune cells, all subject to tight regulation.
  • - The review focuses on how NKT cells, while typically activating immune responses, show immunosuppressive effects in cases of UV damage, non-melanoma skin cancers, transplants, and allergic reactions.
View Article and Find Full Text PDF

IFN-γ has a central role in the defense against infections and cancer. More recently, however, IFN-γ has also been reported to have immunosuppressive effects in models of autoimmune disease, melanoma, and premalignant skin disease. Although IL-12 and IL-18 are critical inducers of IFN-γ during infection, the mechanisms that induce IFN-γ in an immunosuppressive context are unknown.

View Article and Find Full Text PDF