Publications by authors named "Matt Zamzow"

Individual saposin A (A-/-) and saposin B (B-/-)-deficient mice show unique phenotypes caused by insufficient degradation of myelin-related glycosphingolipids (GSLs): galactosylceramide and galactosylsphingosine and sulfatide, respectively. To gain insight into the interrelated functions of saposins A and B, combined saposin AB-deficient mice (AB-/-) were created by knock-in point mutations into the saposins A and B domains on the prosaposin locus. Saposin A and B proteins were undetectable in AB-/- mice, whereas prosaposin, saposin C and saposin D were expressed near wild-type (WT) levels.

View Article and Find Full Text PDF

The pharmacological chaperone, isofagomine (IFG), enhances acid β-glucosidase (GCase) function by altering folding, trafficking, and activity in wild-type and Gaucher disease fibroblasts. The in vivo effects of IFG on GCase activity, its substrate levels, and phenotype were evaluated using a neuronopathic Gaucher disease mouse model, 4L;C* (V394L/V394L + saposin C-/-) that has CNS accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) as well as progressive neurological deterioration. IFG administration to 4L;C* mice at 20 or 600 mg/kg/day resulted in life span extensions of 10 or 20 days, respectively, and increases in GCase activity and protein levels in the brain and visceral tissues.

View Article and Find Full Text PDF

Saposins A, B, C and D are derived from a common precursor, prosaposin (psap). The few patients with saposin C deficiency develop a Gaucher disease-like central nervous system (CNS) phenotype attributed to diminished glucosylceramide (GC) cleavage activity by acid beta-glucosidase (GCase). The in vivo effects of saposin C were examined by creating mice with selective absence of saposin C (C-/-) using a knock-in point mutation (cysteine-to-proline) in exon 11 of the psap gene.

View Article and Find Full Text PDF

Background: Prosaposin encodes, in tandem, four small acidic activator proteins (saposins) with specificities for glycosphingolipid (GSL) hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies.

Results: Our hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss.

View Article and Find Full Text PDF

Saposin B derives from the multi-functional precursor, prosaposin, and functions as an activity enhancer for several glycosphingolipid (GSL) hydrolases. Mutations in saposin B present in humans with phenotypes resembling metachromatic leukodystrophy. To gain insight into saposin B's physiological functions, a specific deficiency was created in mice by a knock-in mutation of an essential cysteine in exon 7 of the prosaposin locus.

View Article and Find Full Text PDF

Saposins (A, B, C and D) are approximately 80 amino acid stimulators of glycosphingolipid (GSL) hydrolases that derive from a single precursor, prosaposin. In both humans and mice, prosaposin/saposin deficiencies lead to severe neurological deficits. The CD-/- mice with saposin C and D combined deficiencies were produced by introducing genomic point mutations into a critical cysteine in each of these saposins.

View Article and Find Full Text PDF