Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score.
View Article and Find Full Text PDFWe used functional magnetic resonance imaging (fMRI) to examine brain activity of higher fit and lower fit children during early and late task blocks of a cognitive control flanker paradigm. For congruent trials, all children showed increased recruitment of frontal and parietal regions during the early block when the task was unfamiliar, followed by a decrease in activity in the later block. No within-group changes in congruent accuracy were reported across task blocks, despite a decline in performance across all participants, likely due to fatigue.
View Article and Find Full Text PDFBecause children are becoming overweight, unhealthy, and unfit, understanding the neurocognitive benefits of an active lifestyle in childhood has important public health and educational implications. Animal research has indicated that aerobic exercise is related to increased cell proliferation and survival in the hippocampus as well as enhanced hippocampal-dependent learning and memory. Recent evidence extends this relationship to elderly humans by suggesting that high aerobic fitness levels in older adults are associated with increased hippocampal volume and superior memory performance.
View Article and Find Full Text PDFThe present investigation is the first to explore the association between childhood aerobic fitness and basal ganglia structure and function. Rodent research has revealed that exercise influences the striatum by increasing dopamine signaling and angiogenesis. In children, higher aerobic fitness levels are associated with greater hippocampal volumes, superior performance on tasks of attentional and interference control, and elevated event-related brain potential indices of executive function.
View Article and Find Full Text PDF