Head-fixation of mice enables high-resolution monitoring of neuronal activity coupled with precise control of environmental stimuli. Virtual reality can be used to emulate the visual experience of movement during head fixation, but a low inertia floating real-world environment (mobile homecage, MHC) has the potential to engage more sensory modalities and provide a richer experimental environment for complex behavioral tasks. However, it is not known whether mice react to this adapted environment in a similar manner to real environments, or whether the MHC can be used to implement validated, maze-based behavioral tasks.
View Article and Find Full Text PDFAcetylcholine release in the hippocampus plays a central role in the formation of new memory representations. An influential but largely untested theory proposes that memory formation requires acetylcholine to enhance responses in CA1 to new sensory information from entorhinal cortex whilst depressing inputs from previously encoded representations in CA3. Here, we show that excitatory inputs from entorhinal cortex and CA3 are depressed equally by synaptic release of acetylcholine in CA1.
View Article and Find Full Text PDFThe formation and maintenance of spatial representations within hippocampal cell assemblies is strongly dictated by patterns of inhibition from diverse interneuron populations. Although it is known that inhibitory synaptic strength is malleable, induction of long-term plasticity at distinct inhibitory synapses and its regulation of hippocampal network activity is not well understood. Here, we show that inhibitory synapses from parvalbumin and somatostatin expressing interneurons undergo long-term depression and potentiation respectively (PV-iLTD and SST-iLTP) during physiological activity patterns.
View Article and Find Full Text PDF