The decision of when to add a new hidden unit or layer is a fundamental challenge for constructive algorithms. It becomes even more complex in the context of multiple hidden layers. Growing both network width and depth offers a robust framework for leveraging the ability to capture more information from the data and model more complex representations.
View Article and Find Full Text PDFSensory stimuli endow animals with the ability to generate an internal representation. This representation can be maintained for a certain duration in the absence of previously elicited inputs. The reliance on an internal representation rather than purely on the basis of external stimuli is a hallmark feature of higher-order functions such as working memory.
View Article and Find Full Text PDFComput Intell Neurosci
January 2020
Recognizing and tracking the direction of moving stimuli is crucial to the control of much animal behaviour. In this study, we examine whether a bio-inspired model of synaptic plasticity implemented in a robotic agent may allow the discrimination of motion direction of real-world stimuli. Starting with a well-established model of short-term synaptic plasticity (STP), we develop a microcircuit motif of spiking neurons capable of exhibiting preferential and nonpreferential responses to changes in the direction of an orientation stimulus in motion.
View Article and Find Full Text PDFBackground: Gemcitabine (2',2'-difluoro-2'-deoxycytidine) is a nucleoside analog used as a single agent and in combination regimens for the treatment of a variety of solid tumors. Several studies have shown a relationship between gemcitabine peak plasma concentration (Cmax) and hematological toxicity. An immunoassay for gemcitabine in plasma was developed and validated to facilitate therapeutic drug monitoring (TDM) by providing an economical, robust method for automated chemistry analyzers.
View Article and Find Full Text PDFOBJECTIVE To evaluate eicosanoid concentrations in freshly prepared canine packed RBCs (PRBCs) and to assess changes in eicosanoid concentrations in PRBC units over time during storage and under transfusion conditions. DESIGN Prospective study. SAMPLE 25 plasma samples from 14 healthy Greyhounds.
View Article and Find Full Text PDFMolecules/clusters have been shown to undergo an enhancement in ionization under ultrafast laser pulses. This enhancement results in the lowering of the laser intensity required to observe ion signal from higher atomic charge states resulting from Coulomb explosion of clusters. Here, we explore the effect of using an early-group transition metal as an electron source in the formation of small silicon clusters on the observed enhancement in ionization.
View Article and Find Full Text PDFGrowth and ionization patterns of small silicon clusters are studied using ultrafast pulses centered at 624 nm by varying the metal electron source for cluster formation using group 10 transition metals. The silicon-cluster size was observed to change as the electron source was varied from Pd
The ionization properties of small group 10 metal oxide clusters are explored using ultrafast pulses centered at 624 nm. Maximum atomic charge states resulting from Coulomb explosion were observed to be Ni(3+), Pd(3+), Pt(5+), and O(2+) species with similar ionization potentials ~30-35 eV. Ion signal as a function of laser intensity of each charge state of Ni, Pd, Pt, and O resulting from Coulomb explosion was mapped and compared to that predicted from semi-classical tunneling theory using sequential ionization potentials to quantify observed enhancements in ionization.
View Article and Find Full Text PDFClusters exhibit an enhancement in ionization rates under intense, ultrafast laser pulses compared to their molecular/atomic counterparts. Studies of ionization enhancement of weakly bound molecules to clusters have not been previously characterized and quantified. We demonstrate that weakly bound ClO to (H(2)O)(n) (n = 1-12) clusters and weakly bound HCl to (H(2)O)(n) (n = 1-12) clusters produce high atomic charge states of chlorine via Coulomb explosion.
View Article and Find Full Text PDFReported herein are strong-field ionization studies of small, neutral Pd(x)O(y) and Zr(x)O(y) clusters made using ultrafast laser pulses (~100 fs) centered at 624 nm. An enhancement in ionization of nearly 1.5 orders of magnitude lower in laser intensity than predicted from literature values is observed for both systems due to clustering.
View Article and Find Full Text PDFHeterogeneously composed clusters are exposed to intensity resolved, 100 fs laser pulses to reveal the energy requirements for the production of the high charge states of both metal and nonmetal ions. The ionization and fragmentation of group V transition metal oxide clusters are here examined with laser intensities ranging nearly four orders in magnitude (∼3 × 10(11) W/cm(2) to ∼2 × 10(15) W/cm(2)) at 624 nm. The ionization potentials of the metal atoms are measured using both multiphoton ionization and tunneling ionization models.
View Article and Find Full Text PDFThe Coulomb explosion of clusters is known to be an efficient source for producing multiply charged ions through an enhanced ionization process. However, the factors responsible for obtaining these high charge states have not been previously explored in detail and remain poorly understood. By comparing intensity-resolved visible laser excitation experiments with semi-classical theory over a range spanning both multiphoton and tunneling ionization regimes, we reveal the mechanism in which extreme ionization proceeds.
View Article and Find Full Text PDFImmunoconjugates of epirubicin were synthesized with monoclonal antibodies against the epidermal growth factor receptors, HER2/neu and EGFR, by creating a sulfhydryl-reactive epirubicin intermediate applying heterobifunctional succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), which was introduced at alpha-monoamide groups of the epirubicin carbohydrate moiety. In parallel, N-succinimidyl-S-acetylthioacetate (SATA) was used to incorporate a sulfhydryl group into immunoglobulin at the terminal amine position of -lysine amino acid residues. Eprirubicin-SMCC-SATA-IgG immunoconjugates were produced by reacting epirubicin-SMCC and SATA-IgG at appropriate molar ratios.
View Article and Find Full Text PDF