Publications by authors named "Matt Pennell"

The adaptive immune system generates a diverse array of B-cell receptors through the processes of V(D)J recombination and somatic hypermutation. B-cell receptors that bind to an antigen will undergo clonal expansion, creating a Darwinian evolutionary dynamic within individuals. A key step in studying these dynamics is to identify sequences derived from the same ancestral V(D)J recombination event (i.

View Article and Find Full Text PDF

Explaining macroevolutionary divergence in light of population genetics requires understanding the extent to which the patterns of mutational input contribute to long-term trends. In the context of quantitative traits, mutational input is typically described by the mutational variance-covariance matrix, or the -matrix, which summarizes phenotypic variances and covariances introduced by new mutations per generation. However, as a summary statistic, the -matrix does not fully capture all the relevant information from the underlying mutational architecture, and there exist infinitely many possible underlying mutational architectures that give rise to the same -matrix.

View Article and Find Full Text PDF
Article Synopsis
  • The goal in both statistical genetics and phylogenetics is to uncover relationships between genetic factors and traits, but their statistical methods differ significantly.
  • The increasing overlap in research areas like medicine and biology necessitates a unified approach, as traditional boundaries between these two fields become less clear.
  • By introducing a general covariance model, the authors illustrate that existing methods can be harmonized, allowing for shared techniques to improve research accuracy and mitigate misleading correlations in both genetics and evolutionary studies.
View Article and Find Full Text PDF
Article Synopsis
  • The study presents detailed genomes of six ape species, achieving high accuracy and complete sequencing of all their chromosomes.
  • It addresses complex genomic regions, leading to enhanced understanding of evolutionary relationships among these species.
  • The findings will serve as a crucial resource for future research on human evolution and our closest ape relatives.
View Article and Find Full Text PDF

Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.

View Article and Find Full Text PDF

Many remarkable innovations have repeatedly occurred across vast evolutionary distances. When convergent traits emerge on the tree of life, they are sometimes driven by the same underlying gene families, while other times many different gene families are involved. Conversely, a gene family may be repeatedly recruited for a single trait or many different traits.

View Article and Find Full Text PDF

Long-read sequencing technologies have revolutionized genome assembly producing near-complete chromosome assemblies for numerous organisms, which are invaluable to research in many fields. However, regions with complex repetitive structure continue to represent a challenge for genome assembly algorithms, particularly in areas with high heterozygosity. Robust and comprehensive solutions for the assessment of assembly accuracy and completeness in these regions do not exist.

View Article and Find Full Text PDF

RNA and protein expressed from the same gene can have diverse isoforms due to various post-transcriptional and post-translational modifications. For the vast majority of alternative isoforms, It is unknown whether they are adaptive or simply biological noise. As we cannot experimentally probe the function of each isoform, we can ask whether the distribution of isoforms across genes and across species is consistent with expectations from different evolutionary processes.

View Article and Find Full Text PDF

The adaptive immune response relies on a diverse repertoire of B-cell receptors, each of which is characterized by a distinct sequence resulting from VDJ-recombination. Upon binding to an antigen, B-cells undergo clonal expansion and in a process unique to B-cells the overall binding affinity of the repertoire is further enhanced by somatic hypermutations in the receptor sequence. For B-cell repertoires it is therefore particularly important to analyze the dynamics of clonal expansion and patterns of somatic hypermutations and thus it is necessary to group the sequences into distinct clones to determine the number and identity of expanding clonal families responding to an antigen.

View Article and Find Full Text PDF

In both statistical genetics and phylogenetics, a major goal is to identify correlations between genetic loci or other aspects of the phenotype or environment and a focal trait. In these two fields, there are sophisticated but disparate statistical traditions aimed at these tasks. The disconnect between their respective approaches is becoming untenable as questions in medicine, conservation biology, and evolutionary biology increasingly rely on integrating data from within and among species, and once-clear conceptual divisions are becoming increasingly blurred.

View Article and Find Full Text PDF

The Saccharomycotina yeasts ("yeasts" hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild. Here, we trained machine learning models on 12,816 terrestrial occurrence records and 96 environmental variables to infer global distribution maps at ~1 km resolution for 186 yeast species (~15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology.

View Article and Find Full Text PDF

Phylogenetic comparative methods are increasingly used to test hypotheses about the evolutionary processes that drive divergence in gene expression among species. However, it is unknown whether the distributional assumptions of phylogenetic models designed for quantitative phenotypic traits are realistic for expression data and importantly, the reliability of conclusions of phylogenetic comparative studies of gene expression may depend on whether the data is well described by the chosen model. To evaluate this, we first fit several phylogenetic models of trait evolution to 8 previously published comparative expression datasets, comprising a total of 54,774 genes with 145,927 unique gene-tissue combinations.

View Article and Find Full Text PDF

The Saccharomycotina yeasts ("yeasts" hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild. Here, we trained machine learning models on 12,221 occurrence records and 96 environmental variables to infer global distribution maps for 186 yeast species (~15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology.

View Article and Find Full Text PDF

Phylogenetic comparative methods are increasingly used to test hypotheses about the evolutionary processes that drive divergence in gene expression among species. However, it is unknown whether the distributional assumptions of phylogenetic models designed for quantitative phenotypic traits are realistic for expression data and importantly, the reliability of conclusions of phylogenetic comparative studies of gene expression may depend on whether the data is well-described by the chosen model. To evaluate this, we first fit several phylogenetic models of trait evolution to 8 previously published comparative expression datasets, comprising a total of 54,774 genes with 145,927 unique gene-tissue combinations.

View Article and Find Full Text PDF

Variation in gene expression across lineages is thought to explain much of the observed phenotypic variation and adaptation. The protein is closer to the target of natural selection but gene expression is typically measured as the amount of mRNA. The broad assumption that mRNA levels are good proxies for protein levels has been undermined by a number of studies reporting moderate or weak correlations between the two measures across species.

View Article and Find Full Text PDF

Explaining broad molecular, phenotypic and species biodiversity patterns necessitates a unifying framework spanning multiple evolutionary scales. Here we argue that although substantial effort has been made to reconcile microevolution and macroevolution, much work remains to identify the links between biological processes at play. We highlight four major questions of evolutionary biology whose solutions require conceptual bridges between micro and macroevolution.

View Article and Find Full Text PDF

Evolutionary dynamics operating across deep time leave footprints in the shapes of phylogenetic trees. For the last several decades, researchers have used increasingly large and robust phylogenies to study the evolutionary history of individual clades and to investigate the causes of the glaring disparities in diversity among groups. Whereas typically not the focal point of individual clade-level studies, many researchers have remarked on recurrent patterns that have been observed across many different groups and at many different time scales.

View Article and Find Full Text PDF

Mutualisms are associations in which interacting species provide services or resources to each other. It has been suggested that being party to a mutualism can spur the diversification of the interacting species due to several potential hypothesized mechanisms. There is empirical evidence to both support and refute this prediction.

View Article and Find Full Text PDF

Variation in gene expression across lineages is thought to explain much of the observed phenotypic variation and adaptation. The protein is closer to the target of natural selection but gene expression is typically measured as the amount of mRNA. The broad assumption that mRNA levels are good proxies for protein levels has been undermined by a number of studies reporting moderate or weak correlations between the two measures across species.

View Article and Find Full Text PDF

The recombination between immunoglobulin (IG) gene segments determines an individual's naïve antibody repertoire and, consequently, (auto)antigen recognition. Emerging evidence suggests that mammalian IG germline variation impacts humoral immune responses associated with vaccination, infection, and autoimmunity - from the molecular level of epitope specificity, up to profound changes in the architecture of antibody repertoires. These links between IG germline variants and immunophenotype raise the question on the evolutionary causes and consequences of diversity within IG loci.

View Article and Find Full Text PDF

Numerous phylogenetic studies reported the existence of a pervasive scaling relationship between the ages of extant eukaryotic clades and their estimated diversification rates. The causes of this age-rate-scaling (ARS), whether biological and/or artifactual, remain unresolved. Here we fit diversification models to thousands of eukaryotic time-calibrated phylogenies to explore multiple potential causes of the ARS including parameter non-identifiability, model inadequacy, biases in taxonomic practice, and an important and ubiquitous form of sampling bias-preferentially analyzing larger extant clades.

View Article and Find Full Text PDF

The processes that allow some lineages to diversify rapidly at a global scale remain poorly understood. Although earlier studies emphasized the importance of dispersal, global expansions expose populations to novel environments and may also require adaptation and diversification across new niches. In this study, we investigated the contributions of these processes to the global radiation of crows and ravens (genus Corvus).

View Article and Find Full Text PDF