Publications by authors named "Matt P Wand"

We derive streamlined mean field variational Bayes algorithms for fitting linear mixed models with crossed random effects. In the most general situation, where the dimensions of the crossed groups are arbitrarily large, streamlining is hindered by lack of sparseness in the underlying least squares system. Because of this fact we also consider a hierarchy of relaxations of the mean field product restriction.

View Article and Find Full Text PDF

Collecting information on multiple longitudinal outcomes is increasingly common in many clinical settings. In many cases, it is desirable to model these outcomes jointly. However, in large data sets, with many outcomes, computational burden often prevents the simultaneous modeling of multiple outcomes within a single model.

View Article and Find Full Text PDF

There is substantial interest in assessing how exposure to environmental mixtures, such as chemical mixtures, affect child health. Researchers are also interested in identifying critical time windows of susceptibility to these complex mixtures. A recently developed method, called lagged kernel machine regression (LKMR), simultaneously accounts for these research questions by estimating effects of time-varying mixture exposures, and identifying their critical exposure windows.

View Article and Find Full Text PDF

Streamlined mean field variational Bayes algorithms for efficient fitting and inference in large models for longitudinal and multilevel data analysis are obtained. The number of operations is linear in the number of groups at each level, which represents a two orders of magnitude improvement over the naïve approach. Storage requirements are also lessened considerably.

View Article and Find Full Text PDF

We consider approximate inference methods for Bayesian inference to longitudinal and multilevel data within the context of health science studies. The complexity of these grouped data often necessitates the use of sophisticated statistical models. However, the large size of these data can pose significant challenges for model fitting in terms of computational speed and memory storage.

View Article and Find Full Text PDF

Twitching motility-mediated biofilm expansion is a complex, multicellular behavior that enables the active colonization of surfaces by many species of bacteria. In this study we have explored the emergence of intricate network patterns of interconnected trails that form in actively expanding biofilms of Pseudomonas aeruginosa. We have used high-resolution, phase-contrast time-lapse microscopy and developed sophisticated computer vision algorithms to track and analyze individual cell movements during expansion of P.

View Article and Find Full Text PDF

We introduce variational Bayes methods for fast approximate inference in functional regression analysis. Both the standard cross-sectional and the increasingly common longitudinal settings are treated. The methodology allows Bayesian functional regression analyses to be conducted without the computational overhead of Monte Carlo methods.

View Article and Find Full Text PDF

Although human experimental studies have shown that gaseous pollutants enhance the inflammatory response to allergens, human data on whether combustion particulates enhance the inflammatory response to allergen are limited. Therefore, we conducted a human experimental study to investigate whether combustion particulates enhance the inflammatory response to aeroallergens. "Enhancement" refers to a greater-than-additive response when combustion particulates are delivered with allergen, compared with the responses when particulates and allergen are delivered alone.

View Article and Find Full Text PDF