Targeted protein degradation (TPD) mediates protein level through small molecule induced redirection of E3 ligases to ubiquitinate neo-substrates and mark them for proteasomal degradation. TPD has recently emerged as a key modality in drug discovery. So far only a few ligases have been utilized for TPD.
View Article and Find Full Text PDFGrowth factor receptor levels are aberrantly high in diverse cancers, driving the proliferation and survival of tumor cells. Understanding the molecular basis for this aberrant elevation has profound clinical implications. Here we show that the pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) suppresses receptor tyrosine kinase (RTK) signaling output by a previously unidentified epigenetic mechanism unrelated to its previously described function as the hydrophobic motif phosphatase for the protein kinase AKT, protein kinase C, and S6 kinase.
View Article and Find Full Text PDFThe pro-survival kinase Akt requires phosphorylation at two conserved residues, the activation loop site (Thr-308) and the hydrophobic motif site (Ser-473), for maximal activation. Previous reports indicate that mTORC2 is necessary for phosphorylation of the hydrophobic motif and that this site is not phosphorylated in cells lacking components of the mTORC2 complex, such as Sin1. Here we show that Akt can be phosphorylated at the hydrophobic motif site (Ser-473) in the absence of mTORC2.
View Article and Find Full Text PDFThe PH domain leucine-rich repeat protein phosphatase, PHLPP, plays a central role in controlling the amplitude of growth factor signaling by directly dephosphorylating and thereby inactivating Akt. The cellular levels of PHLPP1 have recently been shown to be enhanced by its substrate, activated Akt, via modulation of a phosphodegron recognized by the E3 ligase β-TrCP1, thus providing a negative feedback loop to tightly control cellular Akt output. Here we show that this feedback loop is lost in aggressive glioblastoma but not less aggressive astrocytoma.
View Article and Find Full Text PDF