Background: A fumigant volatilization emission was conducted in Washington State in the fall of 2008 to estimate flux following applications of metam sodium by modified low-boom-height (LBH) center-pivot chemigation and soil-incorporated shank injection. This study was performed in a commercial potato field circle to assess emission rates and total cumulative field loss of methyl isothiocyanate (MITC) (the biologically active conversion product of metam sodium) under conditions typical for fall Pacific Northwest potato preplant fumigation. This assessment provides regionally specific MITC emission rate information for modeling appropriate field-edge set-back buffer distances for bystander protection.
View Article and Find Full Text PDFEffective DNA-based vaccines against lentiviruses will likely induce CTL against conserved viral proteins. Equine infectious anemia virus (EIAV) infects horses worldwide, and serves as a useful model for lentiviral immune control. Although attenuated live EIAV vaccines have induced protective immune responses, DNA-based vaccines have not.
View Article and Find Full Text PDFAlthough CTL are important for control of lentiviruses, including equine infectious anemia virus (EIAV), it is not known if CTL can limit lentiviral replication in the absence of CD4 help and neutralizing antibody. Adoptive transfer of EIAV-specific CTL clones into severe combined immunodeficient (SCID) foals could resolve this issue, but it is not known whether exogenous IL-2 administration is sufficient to support the engraftment and proliferation of CTL clones infused into immunodeficient horses. To address this question we adoptively transferred EIAV Rev-specific CTL clones into four EIAV-challenged SCID foals, concurrent with low-dose aldesleukin (180,000U/m2), a modified recombinant human IL-2 (rhuIL-2) product.
View Article and Find Full Text PDFCytotoxic T lymphocytes are involved in controlling intracellular pathogens in many species, including horses. Particularly, CTL are critical for the control of equine infectious anemia virus (EIAV), a lentivirus that infects horses world-wide. In humans and animal models, CTL clones are valuable for evaluating the fine specificity of epitope recognition, and for adoptive immunotherapy against infectious and neoplastic diseases.
View Article and Find Full Text PDFAlthough CTL are critical for control of lentiviruses, including equine infectious anemia virus, relatively little is known regarding the MHC class I molecules that present important epitopes to equine infectious anemia virus-specific CTL. The equine class I molecule 7-6 is associated with the equine leukocyte Ag (ELA)-A1 haplotype and presents the Env-RW12 and Gag-GW12 CTL epitopes. Some ELA-A1 target cells present both epitopes, whereas others are not recognized by Gag-GW12-specific CTL, suggesting that the ELA-A1 haplotype comprises functionally distinct alleles.
View Article and Find Full Text PDFCytotoxic T lymphocytes (CTL) are critical for control of lentiviruses, including equine infectious anemia virus (EIAV). Measurement of equine CTL responses has relied on chromium-release assays, which do not allow accurate quantitation. Recently, the equine MHC class I molecule 7-6, associated with the ELA-A1 haplotype, was shown to present both the Gag-GW12 and Env-RW12 EIAV CTL epitopes.
View Article and Find Full Text PDFEquine infectious anemia virus (EIAV) is a lentivirus that causes persistent infections in horses. We hypothesized that high-avidity CTL specific for nonvariable epitopes might be associated with low viral load and minimal disease in EIAV-infected horses. To test this hypothesis, memory CTL (CTLm) responses were analyzed in two infected horses with high plasma viral loads and recurrent disease (progressors), and in two infected horses with low-to-undetectable viral loads and mild disease (nonprogressors).
View Article and Find Full Text PDF