Here, a novel porous microneedle (PMN) device with bilaterally aligned electroosmotic flow (EOF) enabling controllable dual-mode delivery of molecules is developed. The PMNs placed at anode and cathode compartments are modified with anionic poly-2-acrylamido-2-methyl-1-propanesulfonic acid and cationic poly-(3-acrylamidopropyl) trimethylammonium, respectively. The direction of EOF generated by PMN at the cathode compartment is, therefore, reversed from cathode to anode, countering the unwanted cathodal suctioning of interstitial fluid caused by reverse iontophoresis.
View Article and Find Full Text PDFIntegrating a hydrogel electroosmotic pump with a parylene C-coated porous microneedle (PMN) is developed for transdermal drug delivery applications. The hydrogel pump is fabricated by combining an anionic and a cationic hydrogel to generate enhanced electroosmosis flow (EOF) to drive the transportation of molecules PMN.
View Article and Find Full Text PDFA truncated cone-shaped porous microneedle (PMN) made of poly-glycidyl methacrylate was studied as a minimally invasive tool for transdermal drug delivery. The transdermal electrical resistance of a pig skin was evaluated during the indentation of the PMNs, revealing that the frustoconical PMN (300 μm height) significantly reduced the resistance of the skin by expanding the stratum corneum without penetrating into the skin. A thin film of poly (2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) was grafted onto the inner wall of the microchannels of the frustoconical PMN to generate electroosmotic flow (EOF) upon current application in the direction of injection of the drug into the skin.
View Article and Find Full Text PDFAn intrinsically soft organic electrode consisting of poly(3,4-ethylenedioxythiophene)-modified polyurethane (PEDOT-PU) is embedded into a bilayer film of polyvinyl alcohol (PVA) hydrogels for developing a self-closing cuff electrode for neuromodulation. The curled form of the PVA hydrogel is prepared by releasing internal stress in the bilayer structure. The inner diameter of the cuff electrode is set to less than 2 mm for immobilization to the vagus nerve (VN) of humans and pigs.
View Article and Find Full Text PDFSkin is one of the indispensable organs for life. The epidermis at the outermost surface provides a permeability barrier to infectious agents, chemicals, and excessive loss of water, while the dermis and subcutaneous tissue mechanically support the structure of the skin and appendages, including hairs and secretory glands. The integrity of the integumentary system is a key for general health, and many techniques have been developed to measure and control this protective function.
View Article and Find Full Text PDFA microneedle array is an attractive option for a minimally invasive means to break through the skin barrier for efficient transdermal drug delivery. Here, we report the applications of solid polymer-based ion-conductive porous microneedles (PMN) containing interconnected micropores for improving iontophoresis, which is a technique of enhancing transdermal molecular transport by a direct current through the skin. The PMN modified with a charged hydrogel brings three innovative advantages in iontophoresis at once: (1) lowering the transdermal resistance by low-invasive puncture of the highly resistive stratum corneum, (2) transporting of larger molecules through the interconnected micropores, and (3) generating electroosmotic flow (EOF).
View Article and Find Full Text PDFA totally transparent subdural electrode was developed by embedding a conductive poly (vinyl alcohol) (PVA)-filled microchannel made of poly(dimethylsiloxane) (PDMS) into an another PVA hydrogel substrate. Tight bonding between the PVA substrate and the PDMS microchannel (salt bridge) was achieved by mechanical interlocking utilizing the microprotrusions formed on the microchannel. This simple method of bonding without the use of any additives such as silane molecules or nanofibers is very suitable for constructing biomedical devices.
View Article and Find Full Text PDFCulturing cell spheroids in microchamber arrays is a widely used method in regenerative medicine and drug discovery while it requires laborious procedures during medium exchange and drug administration. Here, we report a simple method for the medium exchange and drug testing using a hydrogel-based sealed microchamber arrays. Owing to the high molecular permeability of poly(vinyl alcohol) hydrogel, the sealed microchamber allows nutrients and drugs in outer medium to pass through.
View Article and Find Full Text PDFA totally soft organic subdural electrode has been developed by embedding an array of poly(3,4-ethylenedioxythiophene)-modified carbon fabric (PEDOT-CF) into the polyvinyl alcohol (PVA) hydrogel substrate. The mesh structure of the stretchable PEDOT-CF allowed stable structural integration with the PVA substrate. The electrode performance for monitoring electrocorticography (ECoG) was evaluated in saline solution, on ex vivo brains, and in vivo animal experiments using rats and porcines.
View Article and Find Full Text PDFThe light-promoted recovery of epidermal barrier of skin was evaluated by the associated recovery of transepidermal potential (TEP), the potential difference between the surface and dermis of skin, by using porcine skin samples. An accelerated recovery of TEP was observed by irradiation of red light with the irradiance of 40 mW/cm2 and a duration of > 10 min. The influence of the light stimulation to the surroundings (~ 20 mm) was also observed.
View Article and Find Full Text PDFSuccessful treatment of age-related macular diseases requires an effective controlled drug release system with less invasive route of administration in the eye to reduce the burden of frequent intravitreal injections for patients. In this study, we developed an episcleral implantable device for sustained release of ranibizumab, and evaluated its efficacy on suppression of laser-induced choroidal neovascularization (CNV) in rats. We tested both biodegradable and non-biodegradable sheet-type devices consisting of crosslinked gelatin/chitosan (Gel/CS) and photopolymerized poly(ethyleneglycol) dimethacrylate that incorporated collagen microparticles (PEGDM/COL).
View Article and Find Full Text PDFA hydrogel-based microchamber with organic electrodes for efficient electrical stimulations of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is described. The microchamber is made from molecularly permeable, optically transparent, and electrically conductive polyvinyl alcohol (PVA) hydrogel and highly capacitive carbon electrode modified with poly(3,4-ethylenedioxythiophene) (PEDOT). Spheroids of hiPSC-CMs are cultured in microchambers, and electrically stimulated by the electrode for maturation.
View Article and Find Full Text PDFThe electrical response of the skin to mechanical stretches is reported here. The electrical potential difference across the epidermis, i.e.
View Article and Find Full Text PDFSensing of lactate in perspiration provides a way to monitor health and control exercise. The volume of perspiration is miniscule, and the efficient collection of perspiration is desired for its effective sensing. We developed mesh-type enzymatic electrodes fabricated on textile meshes and integrated the meshes into an enzymatic biofuel cell.
View Article and Find Full Text PDFA totally organic and disposable electrochromic timer integrated with an enzymatic electrode and powered by biofuel cells is developed. The cathode of the self-powered electrochromic timer consists of a composite electrochromic film of poly(3,4-ethylenedioxythiophene) (PEDOT) and polyurethane (PU), while the anode is made up of a fructose dehydrogenase (FDH) enzymatic electrode. The electrochromic changes over time (up to 100 min) can be displayed in the device, and the speed of color change can be controlled by changing the resistance between the anode and the cathode.
View Article and Find Full Text PDFA flexible polymer film was coated with titanium oxide and a fluoroacrylate polymer to make the surface superhydrophobic and then patterned with superhydrophilic open microfluidic channels consisting of fractal branching structures. The lateral transport of liquid driven by the imbalance of the Laplace pressure in the flow channels with a width gradient allowed the collection of tiny aqueous droplets from the entire surface of the film at the converging point at the center within a second. The proposed fractal patterns were well-defined (, mathematically determined in a unique manner) space-filling trees with only a few geometrical parameters.
View Article and Find Full Text PDFRapid clearance and low ocular bioavailability are drawbacks of conventional ophthalmic eye drops. To increase the ocular drug resistance time and improve efficacy, an in situ forming and thermosensitive chitosan-gelatin hydrogel was developed. The feasibility of using this hydrogel as a topical eye drop formulation for sustained release of timolol maleate was evaluated.
View Article and Find Full Text PDFContractile skeletal muscle cells were cultured so as to wrap around an electrode wire to enable their selective stimulation even when they were co-cultured with other electrically-excitable cells. Since the electrode wire was composed of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and polyurethane (PU), which is soft and highly capacitive (~10 mF cm), non-faradaic electrical stimulation with charge/discharge currents could be applied to the surrounding cells without causing significant damage even for longer periods (more than a week). The advantage of this new culture system was demonstrated in the study of chemotactic interaction of monocytes and skeletal muscle cells via myokines.
View Article and Find Full Text PDFPurpose: We evaluate the ocular tissue distribution and retinal toxicity of unoprostone (UNO) during 12 months, after transscleral sustained-UNO administration using a drug delivery device in monkey eyes.
Methods: The device consisted of a reservoir, controlled-release cover, and a drug formulation of photopolymerized polyethylene glycol dimethacrylate. Six mg UNO was loaded into the device (length, 17 mm; width, 4.
In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation.
View Article and Find Full Text PDFWound healing on skin involves cell migration and proliferation in response to endogenous electric current. External electrical stimulation by electrical equipment is used to promote these biological processes for the treatment of chronic wounds and ulcers. Miniaturization of the electrical stimulation device for wound healing on skin will make this technology more widely available.
View Article and Find Full Text PDFBiomed Microdevices
September 2017
An array of porous microneedles was developed for minimally-invasive transdermal electrolytic connection through the human skin barrier, the stratum corneum. The length of microneedle was designed to be 100 μm so that it penetrates into the epidermis layer without pain. Each microneedle was supported by a thicker cylindrical post protruding from a planar substrate to realize its effective penetration even into elastic human skin.
View Article and Find Full Text PDFSubcutaneous space is a potential site for the transplantation of cells such as islets for treatment of type 1 diabetes. To enhance engraftment, an optimal space for the growth of the transplanted cells is needed along with neovascularization. In this study, we developed a device using a photocurable resin, poly(ethyleneglycol) dimethacrylates (PEGDM), for controlled release of basic fibroblast growth factor (bFGF) to create a subcutaneous neovascular bed in rats.
View Article and Find Full Text PDFRetinal degenerative diseases are a leading cause of irreversible blindness and visual impairment, affecting millions of people worldwide. Although intravitreal injection can directly deliver drugs to the posterior segment of the eye, it is invasive and associated with serious side effects. The design of drug delivery systems targeting the posterior segment of the eye in a less invasive manner has still been challenging because of various anatomical and physiological barriers.
View Article and Find Full Text PDFAngiogenesis plays a critical role in many diseases, including macular degeneration. At present, the pathological mechanisms remain unclear while appropriate models dissecting regulation of angiogenic processes are lacking. We propose an in vitro angiogenesis process and test it by examining the co-culture of human retinal pigmental epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVEC) inside a microfluidic device.
View Article and Find Full Text PDF