Introduction of magnetic nanoparticles into composite sorbents based on polymer matrices has received great attention due to the possibility of using cheap iron oxides and removing spent sorbents by means of magnetic separation. In the present paper, we discuss the problem of creating magnetic sorbents using two types of matrices as host materials: synthetic cation exchange resin and natural aminopolysaccharide chitosan. The possibilities of applying matrices for the in situ formation of oxide phases of a specified composition with the required content of an inorganic component in a composite material were estimated.
View Article and Find Full Text PDFThe article describes the synthesis of composite sorbents by immobilizing iron oxide in a polymer matrix with subsequent hydrothermal treatment at a temperature of 175 °C. The sorbents based on magnetite and hematite were synthesized, their magnetic properties and phase composition were evaluated, and the iron content was determined. Sorption characteristics of the composites towards microconcentrations of Sr-90 radionuclide in solutions with different mineralization and pH were investigated.
View Article and Find Full Text PDFCD28 superagonists (CD28SA) are CD28-specific monoclonal antibodies which are able to activate T-cells without overt TCR engagement. In rodents, CD28SA efficiently activate regulatory T-cells and are therapeutically effective in multiple models of autoimmunity, inflammation and transplantation. However, a phase I study of the human CD28SA TGN1412 in 2006 resulted in a life-threatening cytokine storm.
View Article and Find Full Text PDFPeripheral blood mononuclear cells (PBMCs) are the only source of human lymphoid cells routinely available for immunomonitoring of T-cell responses to microbial and tumor-associated antigens. However, previous work in mice and humans had indicated that CD4 T cells transiently lose antigen sensitivity when cellular contacts are lost (eg, by entering the circulation). Using the simple and robust protocol for resetting T cells to original reactivity (RESTORE; ie, preculturing PBMCs for 2 days at a high cell density before initiation of antigenic stimulation), we show that CD8 T-cell responses to viral and tumor-associated antigens are greatly underestimated in blood, and sometimes even remain undetected, if conventional, unprocessed PBMC cultures are used.
View Article and Find Full Text PDFFollowing inconspicuous preclinical testing, the superagonistic anti-CD28 mAb TGN1412 was applied to six study participants who all developed a devastating cytokine storm. We verified that TGN1412 treatment of fresh PBMCs induced only moderate responses, whereas restoration of tissue-like conditions by high-density preculture (HDC) allowed vigorous cytokine production. TGN1412 treatment of T cells isolated from HDC-PBMCs induced moderate cytokine responses, which upon additional anti-IgG crosslinking were significantly boosted.
View Article and Find Full Text PDFThe pathogenicity of Candida glabrata to patients remains poorly understood for lack of convenient animal models to screen large numbers of mutants for altered virulence. In this study, we explore the minihost model Drosophila melanogaster from the dual perspective of host and pathogen. As in vertebrates, wild-type flies contain C.
View Article and Find Full Text PDFThe Drosophila Toll-signaling pathway controls the systemic antifungal host response. Gram-negative binding protein 3 (GNBP3), a member of the beta-glucan recognition protein family senses fungal infections and activates this pathway. A second detection system perceives the activity of proteolytic fungal virulence factors and redundantly activates Toll.
View Article and Find Full Text PDFTechnology based on RNA interference (RNAi) is a promising source for new antiviral therapies. Although the application of RNAi has been studied extensively, significant problems with using RNAi remain. Very few studies have specifically assessed model systems for testing the effects of viruses or gene delivery vectors on the RNAi system.
View Article and Find Full Text PDFBackground: The retroviral RNase H is essential for viral replication. This component has not yet been extensively studied for antiviral therapy. It can be activated by an oligodeoxynucleotide (ODN) resulting in self-destruction of the virions.
View Article and Find Full Text PDFmiRNAs (microRNAs) play important roles in diverse physiological processes, including stress response, apoptosis and carcinogenesis. Even though the role of individual miRNAs has been demonstrated, expression of proteins involved in miRNA production in response to acute stress or harmful agents has not been extensively investigated. Here, we have studied the role of Dicer, one of the central proteins of the miRNA processing machinery during apoptosis, and show that down-regulation of Dicer results in accelerated apoptosis of HeLa cells, triggered by TNFalpha (tumour necrosis factor alpha).
View Article and Find Full Text PDFIn mammals the interferon (IFN) system is a central innate antiviral defence mechanism, while the involvement of RNA interference (RNAi) in antiviral response against RNA viruses is uncertain. Here, we tested whether RNAi is involved in the antiviral response in mammalian cells. To investigate the role of RNAi in influenza A virus-infected cells in the absence of IFN, we used Vero cells that lack IFN-alpha and IFN-beta genes.
View Article and Find Full Text PDFThe HIV-1 RNase H can be prematurely activated by oligodeoxynucleotides targeting the highly conserved polypurine tract required for second strand DNA synthesis. This inhibits retroviral replication in cell-free HIV particles and newly infected cells. Here we extend these studies to an in vivo model of retroviral replication.
View Article and Find Full Text PDFCold Spring Harb Symp Quant Biol
June 2007
Small interfering RNAs (siRNAs) associated with gene silencing are cellular defense mechanisms against invading viruses. The viruses fight back by suppressors or escape mechanisms. The retroviruses developed a unique escape mechanism by disguising as DNA proviruses.
View Article and Find Full Text PDFWe describe a novel mechanism of viral RNA eradication by an oligodeoxynucleotide A (ODN A) directly in HIV virions. The ODN A consists of an antisense and a passenger strand, and was designed to target the polyp-urine tract (PPT) of HIV-1, a conserved region of the viral genome. It leads to HIV reverse transcriptase/ribonuclease H (RT/RNase H)-dependent degradation of the RNA in viral particles.
View Article and Find Full Text PDFThe Drosophila immune system discriminates between various types of infections and activates appropriate signal transduction pathways to combat the invading microorganisms. The Toll pathway is required for the host response against fungal and most Gram-positive bacterial infections. The sensing of Gram-positive bacteria is mediated by the pattern recognition receptors PGRP-SA and GNBP1 that cooperate to detect the presence of infections in the host.
View Article and Find Full Text PDFWe describe inhibition of HIV replication by a partially double-stranded 54mer oligodeoxynucleotide, ODN, which consists of an antisense strand targeting the highly conserved polypurine tract, PPT, of HIV, and a second strand, compatible with triple-helix formation. Upon treatment of HIV-infected cells with ODN early after infection no viral nucleic acids, syncytia or p24 viral antigen expression was observed. The ODN-mediated effect was highly sequence-specific.
View Article and Find Full Text PDFThe natural function of viruses is to deliver their genetic material to cells. Among the most effective of viruses in doing that is Simian Virus-40 (SV40). The properties that make SV40 a successful virus make it an attractive candidate for use as a gene delivery vehicle: high titer replication, infectivity for almost all nucleated cell types whether the cells are dividing or resting, potential for integration into cellular DNA, a peculiar pathway for entering cells that bypasses the cells' antigen processing apparatus, very high stability, and the apparent ability to activate expression of its own capsid genes in trans.
View Article and Find Full Text PDFThe rapid increase in the study of small interfering RNA (siRNA) as a means to decrease expression of targeted genes has led to concerns about possible unexpected consequences of constitutive siRNA expression. We therefore devised a conditional siRNA expression system in which siRNA targeting hepatitis C virus (HCV) would be produced in response to HCV. We found that HCV acts via NFkappaB to stimulate the HIV long terminal repeat (LTR) as a promoter.
View Article and Find Full Text PDFHepG2 cells stably transfected with a full-length, infectious hepatitis C virus (HCV) cDNA demonstrated consistent replication of HCV for more than 3 years. Intracellular minus strand HCV RNA was present. Minus strand synthesis was NS5B dependent, and was sensitive to interferon alpha (IFN alpha) treatment.
View Article and Find Full Text PDFJ Interferon Cytokine Res
December 2003
Chronic infection with hepatitis B virus (HBV) has potentially devastating consequences and is very difficult to treat. Therapy with recombinant interferons (IFN), especially IFN-alpha, may be effective. The blood IFN-alpha levels that are needed to maintain therapeutic IFN-alpha levels in the liver, however, often cause severe side effects.
View Article and Find Full Text PDFThe Toll-dependent defense against Gram-positive bacterial infections in Drosophila is mediated through the peptidoglycan recognition protein SA (PGRP-SA). A mutation termed osiris disrupts the Gram-negative binding protein 1 (GNBP1) gene and leads to compromised survival of mutant flies after Gram-positive infections, but not after fungal or Gram-negative bacterial challenge. Our results demonstrate that GNBP1 and PGRP-SA can jointly activate the Toll pathway.
View Article and Find Full Text PDFChronic infection with hepatitis C virus (HCV) may lead to liver failure and hepatocellular carcinoma. Current treatment for HCV includes high systemic doses of interferonalpha (IFNalpha), which is effective in less than half of patients and may have severe side effects. We designed conditional IFNalpha and IFNgamma expression constructs to be triggered by HCV-induced activation of NFkappaB, and delivered these using highly efficient recombinant Tag-deleted SV40-derived vectors.
View Article and Find Full Text PDFWhether soluble cytoplasmic factors (SCF) can protect the membrane-associated Ca2+ transport system in sarcoplasmic reticulum (SR) was studied in controls, stress and adaptation to it. Ca-transport was damaged in stress much more in the skeletal muscles compared to the heart. Initial performance of Ca-pump in the skeletal muscles was decreased by 43%, in the heart--no change.
View Article and Find Full Text PDF