Publications by authors named "Mats W J van Es"

Neural activity contains rich spatiotemporal structure that corresponds to cognition. This includes oscillatory bursting and dynamic activity that span across networks of brain regions, all of which can occur on timescales of tens of milliseconds. While these processes can be accessed through brain recordings and imaging, modeling them presents methodological challenges due to their fast and transient nature.

View Article and Find Full Text PDF

Multivariate pattern analysis (MVPA) of Magnetoencephalography (MEG) and Electroencephalography (EEG) data is a valuable tool for understanding how the brain represents and discriminates between different stimuli. Identifying the spatial and temporal signatures of stimuli is typically a crucial output of these analyses. Such analyses are mainly performed using linear, pairwise, sliding window decoding models.

View Article and Find Full Text PDF

Decoding brain imaging data are gaining popularity, with applications in brain-computer interfaces and the study of neural representations. Decoding is typically subject-specific and does not generalise well over subjects, due to high amounts of between subject variability. Techniques that overcome this will not only provide richer neuroscientific insights but also make it possible for group-level models to outperform subject-specific models.

View Article and Find Full Text PDF

Decoding of high temporal resolution, stimulus-evoked neurophysiological data is increasingly used to test theories about how the brain processes information. However, a fundamental relationship between the frequency spectra of the neural signal and the subsequent decoding accuracy timecourse is not widely recognised. We show that, in commonly used instantaneous signal decoding paradigms, each sinusoidal component of the evoked response is translated to double its original frequency in the subsequent decoding accuracy timecourses.

View Article and Find Full Text PDF

Sustained attention has long been thought to benefit perception in a continuous fashion, but recent evidence suggests that it affects perception in a discrete, rhythmic way. Periodic fluctuations in behavioral performance over time, and modulations of behavioral performance by the phase of spontaneous oscillatory brain activity point to an attentional sampling rate in the theta or alpha frequency range. We investigated whether such discrete sampling by attention is reflected in periodic fluctuations in the decodability of visual stimulus orientation from magnetoencephalographic (MEG) brain signals.

View Article and Find Full Text PDF

Rhythmic brain activity may reflect a functional mechanism that facilitates cortical processing and dynamic interareal interactions and thereby give rise to complex behavior. Using magnetoencephalography (MEG), we investigated rhythmic brain activity in a brain-wide network and their relation to behavior, while human subjects executed a variant of the Simon task, a simple stimulus-response task with well-studied behavioral effects. We hypothesized that the faster reaction times (RT) on stimulus-response congruent versus incongruent trials are associated with oscillatory power changes, reflecting a change in local cortical activation.

View Article and Find Full Text PDF

The efficiency of neuronal information transfer in activated brain networks may affect behavioral performance. Gamma-band synchronization has been proposed to be a mechanism that facilitates neuronal processing of behaviorally relevant stimuli. In line with this, it has been shown that strong gamma-band activity in visual cortical areas leads to faster responses to a visual go cue.

View Article and Find Full Text PDF