Nowadays, it has become clear that extracellular vesicles (EVs) are not a cellular waste disposal vesicle but are an essential part of an intercellular communication system. Besides the use of EVs in biomarker studies and diagnostics, the potential of EV-therapeutics has been seen by many. They provide unique properties for disease therapy, including strong immune-modulatory actions, the possibility of engineering, low immunogenicity, and the capability of crossing biological barriers.
View Article and Find Full Text PDFAlthough the global pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, there are currently no specific and highly efficient drugs for COVID-19 available, particularly in severe cases. Recent findings demonstrate that severe COVID-19 disease that requires hospitalization is associated with the hyperactivation of CD4 and CD8 T cell subsets. In this study, we aimed to counteract this high inflammatory state by inducing T-cell hyporesponsiveness in a SARS-CoV-2-specific manner using tolerogenic dendritic cells (tolDC).
View Article and Find Full Text PDFThe central nervous system (CNS) is considered to be an immunologically unique site, in large part given its extensive protection by the blood-brain barrier (BBB). As our knowledge of the complex interaction between the peripheral immune system and the CNS expands, the mechanisms of immune privilege are being refined. Here, we studied the interaction of dendritic cells (DCs) with the BBB in steady-state conditions and observed that transmigrated DCs display an activated phenotype and stronger T cell-stimulatory capacity as compared to non-migrating DCs.
View Article and Find Full Text PDF