Background: Local formation of nitric oxide in the lung induces vasodilation in proportion to ventilation and is a putative mechanism behind ventilation-perfusion matching. We hypothesized that regional ventilation-perfusion matching occurs in part due to local constitutive nitric oxide formation.
Methods: Ventilation and perfusion were analyzed in lung regions (≈1.
The classic four-zone model of lung blood flow distribution has been questioned. We asked whether the effect of positive end-expiratory pressure (PEEP) is different between the prone and supine position for lung tissue in the same zonal condition. Anesthetized and mechanically ventilated prone (n = 6) and supine (n = 5) sheep were studied at 0, 10, and 20 cm H2O PEEP.
View Article and Find Full Text PDFObjective: To examine interactions between positive end-expiratory pressure (PEEP) and posture on regional distribution of ventilation and to compare measurements of regional ventilation with two aerosols: a wet fluorescent microsphere aerosol (FMS, median mass aerodynamic diameter 1.1 microm) and a dry Tc-labeled carbon particle aerosol (Technegas, TG, median mass aerodynamic diameter approximately 0.1 microm).
View Article and Find Full Text PDF