Publications by authors named "Mats Gafvels"

The aim of this study was to elucidate mechanisms whereby bile acids exert beneficial metabolic effects, using the mouse as model. These mice are unable to synthesize cholic acid, resulting in increased synthesis of chenodeoxycholic acid and enlarged bile acid pool. mice were found to be protected against high-fat diet induced obesity.

View Article and Find Full Text PDF

Heterophilic antibodies but also M-components can interfere with laboratory tests causing erroneous results. We report the case of a 75-year-old man with myeloma and a monoclonal immunoglobulin component (M-component) that caused elevated thyroid-stimulating hormone (TSH) results. The M-component was of the IgG-lambda type.

View Article and Find Full Text PDF

Chemotherapeutic agents can reduce bone marrow (BM) activity, causing myelosuppression, a common life-threatening complication of cancer treatment. It is challenging to predict the patients in whom prolonged myelosuppression will occur, resulting in a delay or discontinuation of the treatment protocol. An early indicator of recovery from myelosuppression would thus be highly beneficial in clinical settings.

View Article and Find Full Text PDF

We investigated whether: (1) liver X receptor (LXR)-driven induction of high-density lipoprotein cholesterol (HDL-C) and other LXR-mediated effects on cholesterol metabolism depend on intestinal cholesterol absorption; and (2) combined treatment with the LXR agonist GW3965 and the cholesterol absorption inhibitor ezetimibe results in synergistic effects on cholesterol metabolism that could be beneficial for treatment of atherosclerosis. Mice were fed 0.2 % cholesterol and treated with GW3965+ezetimibe, GW3965 or ezetimibe.

View Article and Find Full Text PDF

Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy.

View Article and Find Full Text PDF

Objective: Primary generalized glucocorticoid resistance is a rare condition characterized by a generalized insensitivity to glucocorticoids, to some extent due to an impaired function of the glucocorticoid receptor. Our earlier genetic analysis of the human glucocorticoid receptor (hGR) in 12 unrelated patients with primary generalized glucocorticoid resistance revealed two new mutations, R477H in exon 4 and G679S in exon 8 in two patients. In order to further study the molecular mechanisms underlying the phenotype of these mutations we have investigated their effect on glucocorticoid signal transduction.

View Article and Find Full Text PDF

To investigate the effects of abolished cholic acid (CA) synthesis in the ApoE knockout model [apolipoprotein E (apoE) KO],a double-knockout (DKO) mouse model was created by crossbreeding Cyp8b1 knockout mice (Cyp8b1 KO), unable to synthesize the primary bile acid CA, with apoE KO mice. After 5 months of cholesterol feeding, the development of atherosclerotic plaques in the proximal aorta was 50% less in the DKO mice compared with the apoE KO mice. This effect was associated with reduced intestinal cholesterol absorption, decreased levels of apoB-containing lipoproteins in the plasma, enhanced bile acid synthesis, reduced hepatic cholesteryl esters, and decreased hepatic activity of ACAT2.

View Article and Find Full Text PDF

Variations in genes associated with cholesterol homeostasis have been reported to modify the risk of developing Alzheimer disease (AD). To date there have been few investigations into variations in genes directly involved in cholesterol biosynthesis and AD. We investigated the influence of the -911C>A polymorphism (rs3761740) in the hydroxy-methyl-glutaryl CoA reductase (HMGCR) gene promoter on basal and regulated transcription, plasma cholesterol levels and the association with AD.

View Article and Find Full Text PDF

Background: Hyperbiliverdinaemia is a poorly defined clinical sign that has been infrequently reported in cases of liver cirrhosis or liver carcinoma, usually indicating a poor long-term prognosis.

Aims: To clarify the pathogenesis of hyperbiliverdinaemia in an extended case report.

Methods: A 64-year-old man with alcoholic cirrhosis was admitted to hospital with severe bleeding from oesophageal varices.

View Article and Find Full Text PDF

Promoter polymorphisms in microsomal triglyceride transfer protein (MTTP) have been associated with decreased plasma lipids but an increased risk for ischemic heart disease (IHD), indicating that MTTP influences the susceptibility for IHD independent of plasma lipids. The objective of this study was to characterize the functional promoter polymorphism in MTTP predisposing to IHD and its underlying mechanism. Use of pyrosequencing technology revealed that presence of the minor alleles of the promoter polymorphisms -493G>T and -164T>C result in lower transcription of MTTP in vivo in the heart, liver, and macrophages.

View Article and Find Full Text PDF

Mevalonate kinase (MVK) catalyses an early step in cholesterol biosynthesis converting mevalonate to phosphomevalonate. Cob(I)alamin adenosyltransferase (MMAB) converts cob(I)alamin to adenosylcobalamin, functionally required for mitochondrial methylmalonyl-CoA mutase activity and succinyl-CoA formation. These two synthenic genes are found in a head-to-head formation on chromosome 12 in man and chromosome 5 in mouse.

View Article and Find Full Text PDF

The synthesis of primary bile acids is confined to the hepatocytes. This study aimed to evaluate the expression pattern within the liver architecture of the rate-limiting enzyme of the neutral pathway, cholesterol 7alpha-hydroxylase (Cyp7a1), and sterol 12alpha-hydroxylase (Cyp8b1), the enzyme necessary for the synthesis of cholic acid. Specific Cyp8b1 and Cyp7a1 peptide antiserums were used for immunohistochemical staining of livers from wild type and Cyp8b1 null mice, the latter instead expressing beta-galactosidase (beta-Gal) as a replacement reporter gene.

View Article and Find Full Text PDF

Squalene epoxidase (SE) is one of the most highly regulated enzymes of the cholesterol biosynthesis pathway. Here we identify the molecular basis for SREBP-2 synergy with NF-Y as the prime regulator of SE gene transcription. As expected cholesterol markedly suppressed transcriptional activity, while SREBP-1a, -1c and -2 activated it.

View Article and Find Full Text PDF

Background/aims: The altered iron metabolism in hepatocellular carcinomas (HCCs), characterized by the iron-deficient phenotype, is suggested to be of importance for tumour growth. However, the underlying molecular mechanisms remain poorly understood. We asked whether these iron perturbations would involve altered expression of genes controlling iron homeostasis.

View Article and Find Full Text PDF

We studied bile acid and cholesterol metabolism in insulin-dependent diabetes utilizing genetically modified mice unable to synthesize cholic acid (Cyp8b1-/-). Diabetes was induced in Cyp8b1-/- and wild type animals (Cyp8b1+/+) by alloxan, and the mice were fed normal or cholesterol-enriched diet for 10 weeks. The serum levels of cholesterol were strongly increased in diabetic Cyp8b1+/+ mice fed cholesterol, while diabetic Cyp8b1-/- mice did not show any aberrations regardless of the diet.

View Article and Find Full Text PDF

Background/aims: To study the effect of iron and proinflammatory cytokines on the expression of HAMP and other iron regulatory genes in primary rat hepatocytes.

Methods: Primary hepatocytes from rats fed a control or iron-enriched diet were plated on extracellular matrix and incubated with inflammatory stimuli in the presence or absence of serum. Cells were also incubated with desferrioxamine or ferric ammonium citrate.

View Article and Find Full Text PDF

To study the effects of cholic acid (CA) feeding on hepatic cholesterol metabolism, male sterol 12alpha-hydroxylase (CYP8B1) knockout (-/-) mice and wildtype controls (+/+) were fed either a control diet or the same diet supplemented with CA (0.1% or 0.5% w/w) or cholesterol (1% w/w).

View Article and Find Full Text PDF

The liver is the only organ where the complete synthesis of bile acids takes place. The present study was undertaken to investigate whether regional differences exist within the individual human hepatic lobuli regarding the pattern of expression of sterol 12alpha-hydroxylase (CYP8B1), a key enzyme in bile acid synthesis. A specific anti-human CYP8B1 peptide antiserum was developed and used for Western blotting and hepatic immunostaining of livers from various patients.

View Article and Find Full Text PDF

Sterol 12alpha-hydroxylase (CYP8B1) is an obligatory enzyme for the synthesis of cholic acid and regulation of liver bile acid synthesis and intestine cholesterol absorption. The present study evaluates the roles for sterol regulatory element binding proteins (SREBPs) in the regulation of the CYP8B1 gene. Cholesterol feeding of mice and rats decreased the activity of CYP8B1, contrary to the up-regulation of cholesterol 7alpha-hydroxylase (CYP7A1).

View Article and Find Full Text PDF

Background/aims: Very little is known about the HFE gene in the rat. The aim of the present study was to determine: (1) the structure of the rat HFE gene; and (2) the tissue expression of the HFE mRNA in the rat, with special emphasis on the liver.

Methods: Cloning of the rat HFE gene was performed using library screening and PCR.

View Article and Find Full Text PDF

Cholesterol is converted into dozens of primary and secondary bile acids through pathways subject to negative feedback regulation mediated by the nuclear receptor farnesoid X receptor (FXR) and other effectors. Disruption of the sterol 12alpha-hydroxylase gene (Cyp8b1) in mice prevents the synthesis of cholate, a primary bile acid, and its metabolites. Feedback regulation of the rate-limiting biosynthetic enzyme cholesterol 7alpha-hydroxylase (CYP7A1) is lost in Cyp8b1(-/-) mice, causing expansion of the bile acid pool and alterations in cholesterol metabolism.

View Article and Find Full Text PDF

To characterize endocrine mechanisms of very low density lipoprotein (VLDL) receptor regulation we studied mouse adipocytic 3T3-L1 cells. Lipid filled adipocyte-like cells are formed during a 5-7 day time course in the presence of insulin, dexamethasone and isobutylmethylxanthine (IBMX). The VLDL receptor protein, in the form of its approximately 120 and approximately 100 kDa type I and type II isoforms, as well as binding of (125)I-beta-VLDL, was induced several-fold during differentiation.

View Article and Find Full Text PDF