Publications by authors named "Mats Boren"

Sample collection, handling and storage are the most critical steps for ensuring the highest preservation of specimens. Pre-analytical variability can influence the results as protein signatures alter rapidly after tissue excision or during long-term storage. Hence, we evaluated current state-of-the-art biobank preservation methods from a glycomics perspective and analyzed O-glycan alterations occurring in the gastric cancer tissues.

View Article and Find Full Text PDF

The ability to adequately measure the phosphorylation state of a protein has major biological as well as clinical relevance. Due to its variable nature, reversible protein phosphorylations are sensitive to changes in the tissue environment. Stabilizor T1 is a system for rapid inactivation of enzymatic activity in biological samples.

View Article and Find Full Text PDF

Analysis of multiple analytes from biological samples can be challenging as different analytes require different preservation measures. Heat induced enzymatic inactivation is an efficient way to preserve proteins and their modifications in biological samples but RNA quality, as measured by RIN value, has been a concern in such samples. Here, we investigate the effect of heat stabilization compared with standard snap freezing on RNA quality using two RNA extraction protocols, QiaZol with and without urea pre-solubilization, and two RNA quality measurements: RIN value, as defined by the Agilent Bioanalyzer, and an alternative qPCR based method.

View Article and Find Full Text PDF

Motivation: Imaging mass spectrometry (IMS) is a maturating technique of molecular imaging. Confidence in the reproducible quality of IMS data is essential for its integration into routine use. However, the predominant method for assessing quality is visual examination, a time consuming, unstandardized and non-scalable approach.

View Article and Find Full Text PDF

Due to post-sampling changes, caused by residual enzyme activity in the sample, levels of analytes can change from their in vivo levels so that they no longer accurately reflect conditions in the living system. The Stabilizor(™) system accomplishes elimination of enzyme activity through heat-induced denaturation of enzymes by permanently altering the 3D protein structure of the enzymes. Heat stabilization can be introduced in the workflow either directly after sampling, with the instrument just next to where the sample is taken, or prior to sample homogenization and extraction, when samples are heat denatured directly from a frozen state.

View Article and Find Full Text PDF

In biological samples, proteins and peptides are altered by proteolytic activity. The actual ex vivo form of the peptidome or proteome analyzed, therefore, does not always reflect the natural in vivo state. Sample stabilization and sample treatment are thereby decisive for how far these two states diverge.

View Article and Find Full Text PDF

Context: Biological material reflecting the in vivo composition of markers provides a high potential for biomarker discovery.

Objective: We compared the serum proteome following heat- and nitrogen-preservation, with and without subsequent storage at room temperature.

Materials And Methods: Serum samples were collected, treated and analysed by two-dimensional gel electrophoresis.

View Article and Find Full Text PDF

This review focuses on post sampling changes and how the Stabilizor system has been used to control this natural biological process and potential implications on cancer-specific biomarkers due to post sampling changes. Tissue sampling is a major traumatic event that can have drastic effects within a very short timeframe at the molecular level [1] resulting in loss of sample quality due to post-mortem changes. A heat-stabilization technology, using the Stabilizor system, has been developed to quickly and permanently abolish the enzymatic activity that causes these changes post-sampling and so preserve sample quality.

View Article and Find Full Text PDF

The ability to adequately measure the phosphorylation state of a protein has major biological as well as clinical relevance. Due to its variable nature, reversible protein phosphorylations are sensitive to changes in the tissue environment. Stabilizor T1 is a system for rapid inactivation of enzymatic activity in biological samples.

View Article and Find Full Text PDF

The effectiveness of rapid and controlled heating of intact tissue to inactivate native enzymatic activity and prevent proteome degradation has been evaluated. Mouse brains were bisected immediately following excision, with one hemisphere being heat treated followed by snap freezing in liquid nitrogen while the other hemisphere was snap frozen immediately. Sections were cut by cryostatic microtome and analyzed by MALDI-MS imaging and minimal label 2-D DIGE, to monitor time-dependent relative changes in intensities of protein and peptide signals.

View Article and Find Full Text PDF

Little is known about the nature of post mortem degradation of proteins and peptides on a global level, the so-called degradome. This is especially true for nonneural tissues. Degradome properties in relation to sampling procedures on different tissues are of great importance for the studies of, for instance, post translational modifications and/or the establishment of clinical biobanks.

View Article and Find Full Text PDF

Sample degradation is a common problem in all types of proteomic analyses as it generates protein and peptide fragments that can interfere with analytical results. An important step in preventing such artefacts is to preserve the native, intact proteome as early as possible during sample preparation prior to proteomic analysis. Using the budding yeast Saccharomyces cerevisiae, we have evaluated the effects of trichloroacetic acid (TCA) and thermal treatments prior to protein extraction as a means to minimise proteolysis.

View Article and Find Full Text PDF

Protein degradation that occurs in tissue during post-mortem interval or sample preparation is problematic in quantitative analyses as confounding variables may arise. Ideally, such artefacts should be prevented by preserving the native proteome during sample preparation. We assessed the efficacy of thermal treatment (TT) to preserve the intact proteome of mouse heart and brain tissue in comparison to standard snap-freezing with liquid nitrogen (LN).

View Article and Find Full Text PDF

Starch branching enzyme (SBE) activity in the cassava storage root exhibited a diurnal fluctuation, dictated by a transcriptional oscillation of the corresponding SBE genes. The peak of SBE activity coincided with the onset of sucrose accumulation in the storage, and we conclude that the oscillatory mechanism keeps the starch synthetic apparatus in the storage root sink in tune with the flux of sucrose from the photosynthetic source. When storage roots were uncoupled from the source, SBE expression could be effectively induced by exogenous sucrose.

View Article and Find Full Text PDF

After tissue or body fluid sampling, proteases and other protein-modifying enzymes can rapidly change composition of the proteome. As a direct consequence, analytical results will reflect a mix of in vivo proteome and ex vivo degradation products. Vital information about the presampling state may be destroyed or distorted, leading to variation between samples and incorrect conclusions.

View Article and Find Full Text PDF

Caspases are essential in animal programmed cell death both as initiator and executioner proteases. Plants do not have close caspase homologues, but several instances of caspase-like proteolytic activity have been demonstrated in connection with programmed cell death in plants. It was asked if caspase-like proteases are involved during development of the barley caryopsis.

View Article and Find Full Text PDF

SURE (sugar responsive) is a cis element in plant sugar signaling. The SURE element was reported first for potato, in which it confers sugar responsiveness to the patatin promoter. A SURE binding transcription factor has not been isolated.

View Article and Find Full Text PDF