Publications by authors named "Mato J"

Combined injections into experimental tumor nodules of adenovirus encoding IL-12 and certain chemokines are capable to induce immune-mediated complete regressions. In this study, we found that the combination of two adenoviruses, one encoding IL-12 and other MIP3alpha (AdCMVIL-12+AdCMVMIP3alpha) was very successful in treating CT-26-derived colon carcinomas. However, in experimental tumors generated from the pancreatic carcinoma cell line Panc02 such combined treatment induces 50% of macroscopic complete regressions, although local relapses within 1 week are almost constant.

View Article and Find Full Text PDF

Two Korean sisters, one detected during neonatal screening, the other ascertained at age 3 years during family screening, have persistent hypermethioninaemia without elevation of plasma tyrosine or severe liver disease. Plasma total homocysteine (tHcy) is mildly elevated, but not so markedly as to establish a diagnosis of homocystinuria due to cystathionine beta-synthase (CBS) deficiency. CBS deficiency was ruled out by the presence of slightly elevated concentrations of plasma cystathionine.

View Article and Find Full Text PDF

Background & Aims: Of the 2 genes (MAT1A, MAT2A) encoding methionine adenosyltransferase, the enzyme that synthesizes S-adenosylmethionine, MAT1A, is expressed in liver, whereas MAT2A is expressed in extrahepatic tissues. In liver, MAT2A expression associates with growth, dedifferentiation, and cancer. Here, we identified the beta subunit as a regulator of proliferation in human hepatoma cell lines.

View Article and Find Full Text PDF

In mammals, methionine adenosyltransferase (MAT), the enzyme responsible for S-adenosylmethionine (AdoMet) synthesis, is encoded by two genes, MAT1A and MAT2A. In liver, MAT1A expression is associated with high AdoMet levels and a differentiated phenotype, whereas MAT2A expression is associated with lower AdoMet levels and a dedifferentiated phenotype. In the current study, we examined regulation of MAT2A gene expression by l-methionine availability using HepG2 cells.

View Article and Find Full Text PDF

Recent work shows that S-adenosylmethionine (AdoMet) helps maintain normal liver function as chronic hepatic deficiency results in spontaneous development of steatohepatitis and hepatocellular carcinoma. The mechanisms by which these nontraditional functions of AdoMet occur are unknown. Here, we use knockout mice deficient in hepatic AdoMet synthesis (MAT1A(-/-)) to study the proteome of the liver during the development of steatohepatitis.

View Article and Find Full Text PDF

Severe necrotizing pancreatitis occurs in young female mice fed a choline-deficient and ethionine-supplemented (CDE) diet. Although the mechanism of the pancreatitis is unknown, one consequence of this diet is depletion of hepatic S-adenosylmethionine (SAM). SAM formation is catalyzed by methionine adenosyltransferases (MATs), which are encoded by liver-specific (MAT1A) and non-liver-specific (MAT2A) genes.

View Article and Find Full Text PDF

One of the features of liver cirrhosis is an abnormal metabolism of methionine--a characteristic that was described more than a half a century ago. Thus, after an oral load of methionine, the rate of clearance of this amino acid from the blood is markedly impaired in cirrhotic patients compared with that in control subjects. Almost 15 y ago we observed that the failure to metabolize methionine in cirrhosis was due to an abnormally low activity of the enzyme methionine adenosyltransferase (EC 2.

View Article and Find Full Text PDF

S-adenosylmethionine (SAM) is an essential metabolite in all cells. SAM is the most important biological methyl group donor and is a precursor in the synthesis of polyamines. Methionine adenosyltransferase (MAT; EC 2.

View Article and Find Full Text PDF

Dietary methionine is mainly metabolized in the liver where it is converted into S-adenosylmethionine (AdoMet), the main biologic methyl donor. This reaction is catalyzed by methionine adenosyltransferase I/III (MAT I/III), the product of MAT1A gene, which is exclusively expressed in this organ. It was first observed that serum methionine levels were elevated in experimental models of liver damage and in liver cirrhosis in human beings.

View Article and Find Full Text PDF

Methionine catabolism occurs mostly in the liver through the formation of S-adenosylmethionine (SAM) in a reaction catalyzed by methionine adenosyltransferase (MAT). S-adenosylmethionine is the principal biologic methyl donor, a precursor for polyamines, and in liver, it is also a precursor for reduced glutathione (GSH). Liver-specific and non-liver-specific MAT are products of two different genes, MAT1A and MAT2A, respectively.

View Article and Find Full Text PDF

In mammals, methionine metabolism occurs mainly in the liver via methionine adenosyltransferase-catalyzed conversion to S-adenosylmethionine. Of the two genes that encode methionine adenosyltransferase(MAT1Aand MAT2A), MAT1A is mainly expressed in adult liver whereas MAT2A is expressed in all extrahepatic tissues. Mice lacking MAT1A have reduced hepatic S-adenosylmethionine content and hyperplasia and spontaneously develop nonalcoholic steatohepatitis.

View Article and Find Full Text PDF

Background & Aims: Liver regeneration is a fundamental response of this organ to injury. Hepatocyte proliferation is triggered by growth factors, such as hepatocyte growth factor. However, hepatocytes need to be primed to react to mitogenic signals.

View Article and Find Full Text PDF

We have previously shown that the administration of low doses of insulin-like growth factor-I (IGF-I) to CCl4-cirrhotic rats improves liver function and reduces fibrosis. To better understand the mechanisms behind the hepatoprotective effects of IGF-I, and to identify those genes whose expression is affected in cirrhosis and after IGF-1 treatment, we have performed differential display of mRNA analysis by means of polymerase chain reaction (PCR) in livers from control and CCl4-cirrhotic rats treated or not with IGF-I. We have identified 16 genes that were up- or down-regulated in the cirrhotic liver.

View Article and Find Full Text PDF

S-adenosylmethionine (AdoMet) is an essential compound in cellular transmethylation reactions and a precursor of polyamine and glutathione synthesis in the liver. In liver injury, the synthesis of AdoMet is impaired and its availability limited. AdoMet administration attenuates experimental liver damage, improves survival of alcoholic patients with cirrhosis, and prevents experimental hepatocarcinogenesis.

View Article and Find Full Text PDF

Methionine adenosyl transferase (MAT) is an essential enzyme that synthesizes AdoMet. The liver-specific MAT isoform, MAT III, is a homodimer of a 43.7-kDa subunit that organizes in three nonsequential alpha-beta domains.

View Article and Find Full Text PDF

Genome sequence analysis reveals that all organisms synthesize S-adenosylmethionine (AdoMet) and that a large fraction of all genes is AdoMet-dependent methyltransferases. AdoMet-dependent methylation has been shown to be central to many biological processes. Up to 85% of all methylation reactions and as much as 48% of methionine metabolism occur in the liver, which indicates the crucial importance of this organ in the regulation of blood methionine.

View Article and Find Full Text PDF

Background/aims: Hepatocellular availability of S-adenosylmethionine, the principal biological methyl donor, is compromised in situations of liver damage. S-Adenosylmethionine administration alleviates experimental liver injury and increases survival in cirrhotic patients. The mechanisms behind these beneficial effects of S-adenosylmethionine are not completely known.

View Article and Find Full Text PDF

Numerous clinical and epidemiological studies have identified elevated homocysteine levels in plasma as a risk factor for atherosclerotic vascular disease and thromboembolism. Hyperhomocysteinemia may develop as a consequence of defects in homocysteine-metabolizing genes; nutritional conditions leading to vitamin B(6), B(12), or folate deficiencies; or chronic alcohol consumption. Homocysteine is an intermediate in methionine metabolism, which takes place mainly in the liver.

View Article and Find Full Text PDF

Liver-specific and nonliver-specific methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine (AdoMet), the principal biological methyl donor. Mature liver expresses MAT1A, whereas MAT2A is expressed in extrahepatic tissues and is induced during liver growth and dedifferentiation. To examine the influence of MAT1A on hepatic growth, we studied the effects of a targeted disruption of the murine MAT1A gene.

View Article and Find Full Text PDF

Methionine adenosyltransferase (MAT) is an essential enzyme that catalyzes the synthesis of S-adenosylmethionine (AdoMet), the most important biological methyl donor. Liver MAT I/III is the product of the MAT1A gene. Hepatic MAT I/III activity and MAT1A expression are compromised under pathological conditions such as alcoholic liver disease and hepatic cirrhosis, and this gene is silenced upon neoplastic transformation of the liver.

View Article and Find Full Text PDF

Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (AdoMet), the main alkylating agent in living cells. Additionally, in the liver, MAT is also responsible for up to 50% of methionine catabolism. Humans with mutations in the gene MAT1A, the gene that encodes the catalytic subunit of MAT I and III, have decreased MAT activity in liver, which results in a persistent hypermethioninemia without homocystinuria.

View Article and Find Full Text PDF

Background/aims: It has been known for at least 50 years that alterations in methionine metabolism occur in human liver cirrhosis. However, the molecular basis of this alteration is not completely understood. In order to gain more insight into the mechanisms behind this condition, mRNA levels of methionine adenosyltransferase (MAT1A), glycine methyltransferase (GNMT), methionine synthase (MS), betaine homocysteine methyltransferase (BHMT) and cystathionine beta-synthase (CBS) were examined in 26 cirrhotic livers, five hepatocellular carcinoma (HCC) tissues and ten control livers.

View Article and Find Full Text PDF