Publications by authors named "Mato J"

Methionine adenosyltransferase 2 A (MAT2A) and MAT2B are essential for hepatic stellate cells (HSCs) activation. Forkhead box M1 (FOXM1) transgenic mice develop liver inflammation and fibrosis. Here we examine if they crosstalk in male mice.

View Article and Find Full Text PDF

Background & Aims: We previously identified subsets of patients with metabolic (dysfunction)-associated steatotic liver disease (MASLD) with different metabolic phenotypes. Here, we aimed to refine this classification based on genetic algorithms implemented in a Python package. The use of these genetic algorithms can help scientists to solve problems which cannot be solved with other methods.

View Article and Find Full Text PDF

Lipidomics has unveiled the intricate human lipidome, emphasizing the extensive diversity within lipid classes in mammalian tissues critical for cellular functions. This diversity poses a challenge in maintaining a delicate balance between adaptability to recurring physiological changes and overall stability. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), linked to factors such as obesity and diabetes, stems from a compromise in the structural and functional stability of the liver within the complexities of lipid metabolism.

View Article and Find Full Text PDF

Background: Metabolic syndrome (MetS) is a cluster of medical conditions and risk factors correlating with insulin resistance that increase the risk of developing cardiometabolic health problems. The specific criteria for diagnosing MetS vary among different medical organizations but are typically based on the evaluation of abdominal obesity, high blood pressure, hyperglycemia, and dyslipidemia. A unique, quantitative and independent estimation of the risk of MetS based only on quantitative biomarkers is highly desirable for the comparison between patients and to study the individual progression of the disease in a quantitative manner.

View Article and Find Full Text PDF

Genetic polymorphisms that impair very low-density lipoprotein (VLDL) secretion are linked to hepatic steatosis, fibrosis, and hepatocellular cancer. Liver-specific deletion of microsomal triglyceride transfer protein (Mttp-LKO) impairs VLDL assembly, promoting hepatic steatosis and fibrosis, which are attenuated in Mttp-LKO X Fabp1-null [Fabp1/Mttp double knockout (DKO)] mice. The current study examined the impact of impaired VLDL secretion in Mttp-LKO mice on hepatocellular cancer incidence and progression in comparison to Fabp1/Mttp DKO mice.

View Article and Find Full Text PDF

MCJ (Methylation-Controlled J protein), an endogenous repressor of the mitochondrial respiratory chain, is upregulated in multiple liver diseases but little is known about how it is regulated. S-adenosylmethionine (SAMe), the biological methyl donor, is frequently depleted in chronic liver diseases. Here, we show that SAMe negatively regulates MCJ in the liver.

View Article and Find Full Text PDF

Background & Aims: The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver.

View Article and Find Full Text PDF

The primary focus of GAMESS over the last 5 years has been the development of new high-performance codes that are able to take effective and efficient advantage of the most advanced computer architectures, both CPU and accelerators. These efforts include employing density fitting and fragmentation methods to reduce the high scaling of well-correlated (e.g.

View Article and Find Full Text PDF

We use a Mg metal to extend the size regime of aqueous clusters to extrapolate to the bulk limit of the vertical detachment energy (VDE) of the solvated electron to >3,200, a value between 1 to over 2 orders of magnitude larger than the one previously measured experimentally or computed theoretically. We relate the VDE to the energy difference between the Mg(HO) and Mg(HO) systems and the metal's second ionization potential. The extrapolated bulk VDEs of the localized surface electron, which moves away from the metal as increases, are 1.

View Article and Find Full Text PDF

Background: Early identification of those with NAFLD activity score ≥ 4 and significant fibrosis (≥F2) or at-risk metabolic dysfunction-associated steatohepatitis (MASH) is a priority as these patients are at increased risk for disease progression and may benefit from therapies. We developed and validated a highly specific metabolomics-driven score to identify at-risk MASH.

Methods: We included derivation (n = 790) and validation (n = 565) cohorts from international tertiary centers.

View Article and Find Full Text PDF

Objective: O-GlcNAcylation is a post-translational modification that directly couples the processes of nutrient sensing, metabolism, and signal transduction, affecting protein function and localization, since the O-linked N-acetylglucosamine moiety comes directly from the metabolism of glucose, lipids, and amino acids. The addition and removal of O-GlcNAc of target proteins are mediated by two highly conserved enzymes: O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and O-GlcNAcase (OGA), respectively. Deregulation of O-GlcNAcylation has been reported to be associated with various human diseases such as cancer, diabetes, and cardiovascular diseases.

View Article and Find Full Text PDF
Article Synopsis
  • One carbon metabolism (1CM) is the process of transferring carbon units between metabolites, relying mainly on nutrients like choline and methionine to support various biosynthetic processes, including nucleotides and amino acids.
  • A key component of 1CM is the synthesis of -adenosylmethionine (SAMe), which controls numerous methyl transfer reactions in cells and is tightly regulated due to its significance.
  • Research on 1CM has helped us understand nonalcoholic fatty liver disease (NAFLD), particularly the roles of specific enzymes and how variations in their activity can lead to different subtypes of NAFLD, including subtype A, which is associated with a specific serum lipid profile and increased cardiovascular risk.
View Article and Find Full Text PDF

COVID-19 currently represents one of the major health challenges worldwide. Albeit its infectious character, with onset affectation mainly at the respiratory track, it is clear that the pathophysiology of COVID-19 has a systemic character, ultimately affecting many organs. This feature enables the possibility of investigating SARS-CoV-2 infection using multi-omic techniques, including metabolomic studies by chromatography coupled to mass spectrometry or by nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disease caused by a CAG repeat expansion in the gene. Though the ATXN3 protein is expressed ubiquitously throughout the CNS, regional pathology in SCA3 patients is observed within select neuronal populations and more recently within oligodendrocyte-rich white matter tracts. We have previously recapitulated these white matter abnormalities in an overexpression mouse model of SCA3 and demonstrated that oligodendrocyte maturation impairments are one of the earliest and most progressive changes in SCA3 pathogenesis.

View Article and Find Full Text PDF

Human studies, in combination with animal and cellular models, support glial cells as both major contributors to neurodegenerative diseases and promising therapeutic targets. Among glial cells, oligodendrocytes and Schwann cells are the myelinating glial cells of the central and peripheral nervous system, respectively. In this review, we discuss the contributions of these central and peripheral myelinating glia to the pathomechanisms of polyglutamine (polyQ) spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17.

View Article and Find Full Text PDF

Low serum folate levels are inversely related to metabolic associated fatty liver disease (MAFLD). The role of the folate transporter gene () was assessed to clarify its involvement in lipid accumulation during the onset of MAFLD in humans and in liver cells by genomic, transcriptomic, and metabolomic techniques. Genotypes of 3 SNPs in a case-control cohort were initially correlated to clinical and serum MAFLD markers.

View Article and Find Full Text PDF

Methionine adenosyltransferase 1a (MAT1A) is responsible for hepatic S-adenosyl-L-methionine (SAMe) biosynthesis. mice have hepatic SAMe depletion, develop nonalcoholic steatohepatitis (NASH) which is reversed with SAMe administration. We examined temporal alterations in the proteome/phosphoproteome in pre-disease and NASH mice, effects of SAMe administration, and compared to human nonalcoholic fatty liver disease (NAFLD).

View Article and Find Full Text PDF

(1) Background: Human frataxin is an iron binding protein that participates in the biogenesis of iron sulfur clusters and enhances ferrochelatase activity. While frataxin association to other proteins has been extensively characterized up to the structural level, much less is known about the putative capacity of frataxin to interact with functionally related metabolites. In turn, current knowledge about frataxin's capacity to coordinate metal ions is limited to iron (II and III); (2) Methods: here, we used NMR spectroscopy, Molecular Dynamics, and Docking approaches to demonstrate new roles of frataxin; (3) Results: We demonstrate that frataxin also binds Zn in a structurally similar way to Fe, but with lower affinity.

View Article and Find Full Text PDF

After SARS-CoV-2 infection, the molecular phenoreversion of the immunological response and its associated metabolic dysregulation are required for a full recovery of the patient. This process is patient-dependent due to the manifold possibilities induced by virus severity, its phylogenic evolution and the vaccination status of the population. We have here investigated the natural history of COVID-19 disease at the molecular level, characterizing the metabolic and immunological phenoreversion over time in large cohorts of hospitalized severe patients (n = 886) and non-hospitalized recovered patients that self-reported having passed the disease (n = 513).

View Article and Find Full Text PDF

Vaccines against SARS-CoV-2 have alleviated infection rates, hospitalization and deaths associated with COVID-19. In order to monitor humoral immunity, several serology tests have been developed, but the recent emergence of variants of concern has revealed the need for assays that predict the neutralizing capacity of antibodies in a fast and adaptable manner. Sensitive and fast neutralization assays would allow a timely evaluation of immunity against emerging variants and support drug and vaccine discovery efforts.

View Article and Find Full Text PDF

For a long time, conventional medicine has analysed biomolecules to diagnose diseases. Yet, this approach has proven valid only for a limited number of metabolites and often through a bijective relationship with the disease (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Patients with acute hepatic porphyrias experience neurological attacks due to an overproduction of porphobilinogen (PBG) and δ-aminolevulinic acid (ALA).
  • In acute intermittent porphyria (AIP), gene mutations cause a deficiency in the enzyme PBG deaminase, leading to PBG buildup, although the exact accumulation of ALA remains unclear.
  • Research findings indicate that even low levels of PBG can inhibit the enzyme responsible for breaking it down, thereby causing an immediate increase in ALA levels, contributing to the symptoms seen in acute porphyrias.
View Article and Find Full Text PDF

Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products.

View Article and Find Full Text PDF