Publications by authors named "Matko J"

Membrane nanotubes (NTs) are dynamic communication channels connecting spatially separated cells even over long distances and promoting the transport of different cellular cargos. NTs are also involved in the intercellular spread of different pathogens and the deterioration of some neurological disorders. Transport processes via NTs may be controlled by cytoskeletal elements.

View Article and Find Full Text PDF

Membrane nanotubes are cell protrusions that grow to tens of micrometres and functionally connect cells. Actin filaments are semi-flexible polymers, and their polymerisation provides force for the formation and growth of membrane nanotubes. The molecular bases for the provision of appropriate force through such long distances are not yet clear.

View Article and Find Full Text PDF

Introduction: Galectins are master regulators of maternal immune responses and placentation in pregnancy. Galectin-13 (gal-13) and galectin-14 (gal-14) are expressed solely by the placenta and contribute to maternal-fetal immune tolerance by inducing the apoptosis of activated T lymphocytes and the polarization of neutrophils toward an immune-regulatory phenotype.Furthermore, their decreased placental expression is associated with pregnancy complications, such as preeclampsia and miscarriage.

View Article and Find Full Text PDF
Article Synopsis
  • Proteoglycans are crucial for various physiological processes related to pregnancy, such as cell adhesion, growth, and blood vessel formation, but their exact roles in human reproduction are not fully understood.
  • This overview highlights syndecan-1 as a key proteoglycan involved in trophoblast development and its altered expression in pregnancy complications like pre-eclampsia and fetal growth restriction.
  • The findings suggest that proteoglycans, particularly syndecan-1, play significant roles in placental function and may serve as indicators for healthy pregnancies and potential complications, warranting further research for diagnostic and therapeutic applications.
View Article and Find Full Text PDF

Nanotubular connections between mammalian cell types came into the focus only two decades ago, when "live cell super-resolution imaging" was introduced. Observations of these long-time overlooked structures led to understanding mechanisms of their growth/withdrawal and exploring some key genetic and signaling factors behind their formation. Unbelievable level of multiple supportive collaboration between tumor cells undergoing cytotoxic chemotherapy, cross-feeding" between independent bacterial strains or "cross-dressing" collaboration of immune cells promoting cellular immune response, all via nanotubes, have been explored recently.

View Article and Find Full Text PDF

Recently, it has become evident that mitochondrial transfer (MT) plays a crucial role in the acquisition of cancer drug resistance in many hematologic malignancies; however, for multiple myeloma, there is a need to generate novel data to better understand this mechanism. Here, we show that primary myeloma cells (MMs) respond to an increasing concentration of chemotherapeutic drugs with an increase in the acquisition of mitochondria from autologous bone marrow stromal cells (BM-MSCs), whereupon survival and adenosine triphosphate levels of MMs increase, while the mitochondrial superoxide levels decrease in MMs. These changes are proportional to the amount of incorporated BM-MSC-derived mitochondria and to the concentration of the used drug, but seem independent from the type and mechanism of action of chemotherapeutics.

View Article and Find Full Text PDF

The positive coreceptor function of complement receptor type 2 [CR2 (CD21)] on B cells is generally accepted, although its role in the enhancement of antibody production had only been proven in mice. The importance of this phenomenon prompted reinvestigation of the functional consequences of coclustering CD21 and the B cell receptor (BCR) on primary human cells. We found that, at non-stimulatory concentrations of anti-IgG/A/M, coclustering the BCR and CR2 enhanced the Ca response, while activation marker expression, cytokine production, proliferation, and antibody production were all inhibited upon the coengagement of CR2 and BCR on human B cells.

View Article and Find Full Text PDF

Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein subfamily, is predominantly expressed in the brain and placenta in humans. Recently, we unveiled that ZNF554 regulates trophoblast invasion during placentation and its decreased expression leads to the early pathogenesis of preeclampsia. Since ZNF proteins are immensely implicated in the development of several tumors including malignant tumors of the brain, here we explored the pathological role of ZNF554 in gliomas.

View Article and Find Full Text PDF

Gene expression studies of molar pregnancy have been limited to a small number of candidate loci. We analyzed high-dimensional RNA and protein data to characterize molecular features of complete hydatidiform moles (CHMs) and corresponding pathologic pathways. CHMs and first trimester placentas were collected, histopathologically examined, then flash-frozen or paraffin-embedded.

View Article and Find Full Text PDF

Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy.

View Article and Find Full Text PDF

IL-10 is a suppressive cytokine that has been implicated in the pathophysiology of autoimmune disorders and can be produced by different cell types such as regulatory B-cells. Our previous work showed that under inflammatory condition MZ B-cells differentiated into IL-10 producing cells and contributed to the downregulation of collagen-induced arthritis, while follicular B-cells failed to do so. Based on these observations, we aimed to investigate how inflammatory signals mediated through the BCR, TLR9 and IFN-γ receptors trigger IL-10 production in MZ B-cells but leave FO B-cells unresponsive.

View Article and Find Full Text PDF

The complex effects of estradiol on non-reproductive tissues/cells, including lymphoid tissues and immunocytes, have increasingly been explored. However, the role of sex hormone binding globulin (SHBG) in the regulation of these genomic and non-genomic actions of estradiol is controversial. Moreover, the expression of SHBG and its internalization by potential receptors, as well as the influence of SHBG on estradiol uptake and signaling in lymphocytes has remained unexplored.

View Article and Find Full Text PDF

Membrane nanotubes are transient long-distance connections between cells that can facilitate intercellular communication. These tethers can form spontaneously between many cell types, including cells of the immune and nervous systems. Traffic of viral proteins, vesicles, calcium ions, mRNA, miRNA, mitochondria, lysosomes and membrane proteins/raft domains have all been reported so far via the open ended tunneling nanotubes (TNTs).

View Article and Find Full Text PDF

C1q, a member of the immune complement cascade, is implicated in the selective pruning of synapses by microglial phagocytosis. C1q-mediated synapse elimination has been shown to occur during brain development, while increased activation and complement-dependent synapse loss is observed in neurodegenerative diseases. However, the molecular mechanisms underlying C1q-controlled synaptic pruning are mostly unknown.

View Article and Find Full Text PDF

Nanotubes (NTs) are thin, long membranous structures forming novel, yet poorly known communication pathways between various cell types. Key mechanisms controlling their growth still remained poorly understood. Since NT-forming capacity of immature and mature B cells was found largely different, we investigated how lipid composition and molecular order of the membrane affect NT-formation.

View Article and Find Full Text PDF

Tunneling nanotubes (TNTs) are long intercellular connecting structures providing a special transport route between two neighboring cells. To date TNTs have been reported in different cell types including immune cells such as T-, NK, dendritic cells, or macrophages. Here we report that mature, but not immature, B cells spontaneously form extensive TNT networks under conditions resembling the physiological environment.

View Article and Find Full Text PDF

Adrenocortical cancer (ACC) is a rare, but agressive malignancy with poor prognosis. Histopathological diagnosis is challenging and pharmacological options for treatment are limited. By the comparative reanalysis of the transcriptional malignancy signature with the cell cycle dependent transcriptional program of ACC, we aimed to identify novel biomarkers which may be used in the histopathological diagnosis and for the prediction of therapeutical response of ACC.

View Article and Find Full Text PDF

Background: Previously, drug-based synchronization procedures were used for characterizing the cell cycle dependent transcriptional program. However, these synchronization methods result in growth imbalance and alteration of the cell cycle machinery. DNA content-based fluorescence activated cell sorting (FACS) is able to sort the different cell cycle phases without perturbing the cell cycle.

View Article and Find Full Text PDF

In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations.

View Article and Find Full Text PDF

Galectins are glycan-binding proteins that regulate innate and adaptive immune responses, and some confer maternal-fetal immune tolerance in eutherian mammals. A chromosome 19 cluster of galectins has emerged in anthropoid primates, species with deep placentation and long gestation. Three of the five human cluster galectins are solely expressed in the placenta, where they may confer additional immunoregulatory functions to enable deep placentation.

View Article and Find Full Text PDF

Protein microarray technology is becoming the method of choice for identifying protein interaction partners, detecting specific proteins, carbohydrates and lipids, or for characterizing protein interactions and serum antibodies in a massively parallel manner. Availability of the well-established instrumentation of DNA arrays and development of new fluorescent detection instruments promoted the spread of this technique. Fluorescent detection has the advantage of high sensitivity, specificity, simplicity and wide dynamic range required by most measurements.

View Article and Find Full Text PDF

The actual level of circulating estrogen (17β-estradiol, E2) has a serious impact on regulation of diverse immune cell functions, where their classical cytoplasmic receptors, ERα and ERβ, act as nuclear transcriptional regulators of multiple target genes. There is growing evidence, however, for rapid, "non-nuclear" regulatory effects of E2 on lymphocytes. Such effects are likely mediated by putative membrane-associated receptor(s) (mER), but the mechanistic details and the involved signaling pathways still remained largely unknown because of their complexity.

View Article and Find Full Text PDF

Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples-e.

View Article and Find Full Text PDF