Background: Immersive virtual reality has the potential to motivate and challenge patients who need and want to relearn movements in the process of neurorehabilitation.
Objective: The aim of this study was to evaluate the feasibility and user acceptance of an innovative immersive virtual reality system (head-mounted display) used in combination with robot-assisted gait training in subjects suffering from neurological diseases.
Methods: Fifteen participants suffering from cerebrovascular accident or spinal cord injury completed a single session of immersive virtual reality using a head-mounted display during a Lokomat gait session.
J Neuroeng Rehabil
September 2024
Background: Gait event detection is crucial for assessment, evaluation and provision of biofeedback during rehabilitation of walking. Existing online gait event detection algorithms mostly rely on add-on sensors, limiting their practicality. Instrumented treadmills offer a promising alternative by utilizing the Center of Pressure (CoP) signal for real-time gait event detection.
View Article and Find Full Text PDFIEEE Int Conf Rehabil Robot
July 2022
Various approaches in ankle exoskeleton design and control have recently been proposed and implemented, but few have been able to produce devices suitable for rehabilitation in clinical environment. In a recent in-silico study, we proposed a novel device: Ankle Exoskeleton using Treadmill Actuation for Push-off assistance (AN-EXTRA-Push). Using a brake and an elastic tendon, it harnesses energy of a moving treadmill during stance phase, then releases it during push-off to aid with plantarflexion torque generation.
View Article and Find Full Text PDFPerturbation-based balance training (PBT) has been shown to improve reactive balancing abilities in chronic stroke. To inform future investigations in the subacute phase of stroke, the objective of this series of N-of-1 studies was to investigate the range of balancing responses to unexpected mechanical perturbations applied to the pelvis during walking on an instrumented treadmill before and after PBT training. Three subacute stroke subjects were assessed on each occasion with clinical tests and biomechanical measurements following perturbations applied in forward, backward, inward and outward directions.
View Article and Find Full Text PDFHigh-density (HD) electrodes have been introduced in research and diagnostic electromyography. Recent advances in technology offer an opportunity for using the HDEMG signal as biofeedback in stroke rehabilitation. The purpose of this case study was to test the feasibility of using two 5 × 13 electrode arrays for providing real-time HDEMG biofeedback and the preliminary outcome of combining HDEMG biofeedback with robotic wrist exercises over 4 weeks in a person who suffered a stroke 26 months earlier.
View Article and Find Full Text PDFEstimation of the centre of pressure (COP) is an important part of the gait analysis, for example, when evaluating the functional capacity of individuals affected by motor impairment. Inertial measurement units (IMUs) and force sensors are commonly used to measure gait characteristic of healthy and impaired subjects. We present a methodology for estimating the COP solely from raw gyroscope, accelerometer, and magnetometer data from IMUs using statistical modelling.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Recovering of upper extremity functions is important for stroke patients to perform various tasks in daily life. For better rehabilitation outcomes and accurate measurement, robot assisted exercises have been developed. However, there are limited number of studies related to arm muscles activities corresponding to task complexity.
View Article and Find Full Text PDFMultiple strategies may be used when counteracting loss of balance during walking. Placing the foot onto a new location is not efficient when walking speed is very low. Instead medio-lateral displacement of center-of-pressure, rotation of body segments to produce a lateral ground-reaction-force, and pronounced braking of movement in the plane of progression is used.
View Article and Find Full Text PDFBackground: Generating appropriate balancing reactions in response to unexpected loss of balance during walking is important to prevent falls. The purpose of this study was to assess dynamic balancing responses following pushes to the pelvis in groups of post-stroke and healthy subjects.
Methods: Forty-one post-stroke subjects and forty-three healthy subjects participated in the study.
We evaluated different muscle excitation estimation techniques, and their sensitivity to Motor Unit (MU) distribution in muscle tissue. For this purpose, the Convolution Kernel Compensation (CKC) method was used to identify the MU spike trains from High-Density ElectroMyoGrams (HDEMG). Afterwards, Cumulative MU Spike Train (CST) was calculated by summing up the identified MU spike trains.
View Article and Find Full Text PDFIEEE Int Conf Rehabil Robot
June 2019
Gait training after stroke is often associated with rehabilitation robotics and virtual environment in order to simulate practice of different functional gait tasks. Changing direction, walking up and down the slope are important skills that need to be practiced. The aim of this preliminary study was to compare inclined treadmill walking and turning conditions with its emulations on a recently developed Balance Assessment Robot for Treadmill walking (BART) on a basis of ground reaction forces (GRF) and lower extremity electromyography (EMG).
View Article and Find Full Text PDFBackground: Common understanding is that adequate foot placement (stepping strategy) is crucial in maintaining stability during walking at normal speed. The aim of this study was to investigate strategies that humans use to cope with lateral perturbations during very slow walking.
Methods: Ten healthy individuals underwent an experimental protocol whereby a set of perturbations directed inward (medially to a stance leg) and outward (laterally to a stance leg) of three intensities ( = 5%, = 10%, and = 15% of body weight), applied at three instances of a stance phase, were delivered in random order to the pelvis using a balance assessment robot while walking on a treadmill at three walking speeds ( = 0.
Background: For stroke survivors, balance deficits that persist after the completion of the rehabilitation process lead to a significant risk of falls. We have recently developed a balance-assessment robot (BAR-TM) that enables assessment of balancing abilities during walking. The purpose of this study was to test feasibility of using the BAR-TM in an experimental perturbed-balance training program with a selected high-functioning stroke survivor.
View Article and Find Full Text PDFIEEE Int Conf Rehabil Robot
July 2017
Admittance control is considered as a promising paradigm in rehabilitation that provides us with means to establish well controlled and adjustable interaction and cooperation between rehabilitation devices and patients. Recently we developed balance assessment robot (BAR) for studying postural responses during walking as well as for pelvis manipulation during walking that implements admittance control as a mean of interaction with user. In this study we evaluated the characteristics of transparent haptic interaction and investigated whether transparent haptic interaction induces adaptations in muscle activation patterns with respect to free walking.
View Article and Find Full Text PDFIEEE Int Conf Rehabil Robot
July 2017
Gait asymmetry as a consequence of hemiparesis is known as a serious long-term disability, where typical compensatory gait movements are used by stroke subjects in order to cope with their daily activities. This study presents a gait symmetry training approach consisting of the adaptive robot assistance with the combination of the visual feedback integrated in Balance Assessment Robot for treadmill walking (BAR-TM). The support algorithm is based on gait temporal parameters that change the level of assistive support, which was triggered at different gait subphase events.
View Article and Find Full Text PDFIn this study we investigated balancing responses to lateral perturbations during slow walking (0.85m/s). A group of seven healthy individuals walked on an instrumented treadmill while being perturbed at the level of waist at left heel strike in outward and inward lateral directions.
View Article and Find Full Text PDFBackground: Treadmills are used frequently in rehabilitation enabling neurologically impaired subjects to train walking while being assisted by therapists. Numerous studies compared walking on treadmill and overground for unperturbed but not also perturbed conditions.
Objective: The objective of this study was to compare stepping responses (step length, step width and step time) during overground and treadmill walking in a group of healthy subjects where balance assessment robots applied perturbing pushes to the subject's pelvis in sagittal and frontal planes.
Background: The most common approach to studying dynamic balance during walking is by applying perturbations. Previous studies that investigated dynamic balance responses predominantly focused on applying perturbations in frontal plane while walking on treadmill. The goal of our work was to develop balance assessment robot (BAR) that can be used during overground walking and to assess normative balance responses to perturbations in transversal plane in a group of neurologically healthy individuals.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
June 2016
Sit-to-stand (STS) transfer training is probably the most demanding task in rehabilitation. We have developed an innovative STS trainer that offers variable levels of mechanical support and speeds of STS transfer. In a group of neurologically intact individuals we compared kinematics, kinetics and electromyography (EMG) patterns of STS transfer assessed in three experimental conditions with increasing degree of mechanical support (MIN STS-T, MED STS-T, and MAX STS-T) to natural, unassisted STS movement (NO STS-T).
View Article and Find Full Text PDFIn therapy after stroke, intensive and repetitive training is crucial for relearning of motor abilities and functionalities. Besides conventional therapy, rehabilitation robotic systems are used in the treatment, where a minimum jerk model is used widely in the formation of the point-to-point movement trajectory, which is not necessarily the appropriate choice for hemiparetic upper extremity training. This paper examines and analyzes the influence of a selected form of a flexor muscle tightness on trajectory formation and proposes a guidance scheme that yields minimum effort in robot-assisted arm reaching movement.
View Article and Find Full Text PDF