Publications by authors named "Matjaz Weiss"

Novel bacterial topoisomerase inhibitors (NBTIs) are new promising antimicrobials for the treatment of multidrug-resistant bacterial infections. In recent years, many new NBTIs have been discovered, however most of them struggle with the same issue - the balance between antibacterial activity and hERG-related toxicity. We started a new campaign by optimizing the previous series of NBTIs, followed by the design and synthesis of a new, amide-containing focused NBTI library to reduce hERG inhibition and maintain antibacterial activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA).

View Article and Find Full Text PDF

The success of vaccination with subunit vaccines often relies on the careful choice of adjuvants. There is great interest in developing new adjuvants that can elicit a cellular immune response. Here, we address this challenge by taking advantage of the synergistic cross-talk between two pattern recognition receptors: nucleotide-binding oligomerization-domain-containing protein 2 (NOD2) and Toll-like receptor 7 (TLR7).

View Article and Find Full Text PDF

Novel bacterial topoisomerase inhibitors (NBTIs) are an important new class of antibacterials targeting bacterial type II topoisomerases (DNA gyrase and topoisomerase IV). Notwithstanding their potent antibacterial activity, they suffer from a detrimental class-related hERG blockage. In this study, we designed and synthesized an optimized library of NBTIs comprising different linker moieties that exhibit reduced hERG inhibition and retain inhibitory potencies on DNA gyrase and topoisomerase IV of Staphylococcus aureus and Escherichia coli, respectively, as well as potent antibacterial activities.

View Article and Find Full Text PDF

-GlcNAcylation is an essential post-translational modification installed by the enzyme -β--acetyl-d-glucosaminyl transferase (OGT). Modulating this enzyme would be extremely valuable to better understand its role in the development of serious human pathologies, such as diabetes and cancer. However, the limited availability of potent and selective inhibitors hinders the validation of this potential therapeutic target.

View Article and Find Full Text PDF

The O-GlcNAcylation is a posttranslational modification of proteins regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase. These enzymes regulate the development, proliferation and function of cells, including the immune cells. Herein, we focused on the role of O-GlcNAcylation in human monocyte derived dendritic cells (moDCs).

View Article and Find Full Text PDF

We designed and synthesized an optimized library of novel bacterial topoisomerase inhibitors with -halogenated phenyl right-hand side fragments and significantly enhanced and balanced dual-targeted DNA gyrase and topoisomerase IV activities of and . By increasing the electron-withdrawing properties of the -halogenated phenyl right-hand side fragment and maintaining a similar lipophilicity and size, an increased potency was achieved, indicating that the antibacterial activities of this series of novel bacterial topoisomerase inhibitors against all target enzymes are determined by halogen-bonding rather than van der Waals interactions. They show nanomolar enzyme inhibitory and whole-cell antibacterial activities against and methicillin-resistant (MRSA) strains.

View Article and Find Full Text PDF

Herein, we report the design of a focused library of novel bacterial topoisomerase inhibitors (NBTIs) based on innovative mainly monocyclic right-hand side fragments active against DNA gyrase and Topo IV. They exhibit a very potent and wide range of antibacterial activity, even against some of the most concerning hard-to-treat pathogens for which new antibacterials are urgently needed, as reported by the WHO and CDC. NBTIs enzyme activity and whole cell potency seems to depend on the fine-tuned lipophilicity/hydrophilicity ratio that governs the permeability of those compounds through the bacterial membranes.

View Article and Find Full Text PDF

O-GlcNAcylation is an important post-translational and metabolic process in cells that must be carefully regulated. O-GlcNAc transferase (OGT) is ubiquitously present in cells and is the only enzyme that catalyzes the transfer of O-GlcNAc to proteins. OGT is a promising target in various pathologies such as cancer, immune system diseases, or nervous impairment.

View Article and Find Full Text PDF

Lectins are involved in a wide range of carbohydrate mediated recognition processes. Therefore, the availability of highly performant fluorescent tools tailored for lectin targeting and able to efficiently track events related to such key targets is in high demand. We report here on the synthesis of the glyco-BODIPYs 1 and 2, based on the efficient combination of a Heck-like cross coupling and a Knoevenagel condensation, which revealed efficient in addressing lectins.

View Article and Find Full Text PDF

-GlcNAcylation is an essential post-translational modification that occurs on nuclear and cytoplasmic proteins, regulating their function in response to cellular stress and altered nutrient availability. -GlcNAc transferase (OGT) is the enzyme that catalyzes this reaction and represents a potential therapeutic target, whose biological role is still not fully understood. To support this research field, a series of cell-permeable, low-nanomolar OGT inhibitors were recently reported.

View Article and Find Full Text PDF

Novel bacterial topoisomerase inhibitors (NBTIs) are a promising class of bacterial topoisomerase II inhibitors that are gaining more and more importance mainly because of their excellent antibacterial activity, as well as their lack of cross-resistance to quinolones. Described here is the synthesis and biological evaluation of a tiny series of new virtually assembled NBTIs containing synthetically feasible right-hand side fragments capable of binding the GyrA subunit of the bacterial DNA gyrase-DNA complex. NBTI variants with incorporated 1-phenylpyrazole right-hand side moiety show suitable antibacterial activity against Gram-positive , with confirmed selectivity over the human topoisomerase IIα enzyme.

View Article and Find Full Text PDF

-GlcNAc transferase (OGT) attaches a GlcNAc moiety on specific substrate proteins using UDP-GlcNAc as the sugar donor. This modification can alter protein function by regulating cellular signaling and transcription pathways in response to altered nutrient availability and stress. Specific inhibitors of OGT would be valuable tools for biological studies and lead structures for therapeutics.

View Article and Find Full Text PDF