Publications by authors named "Matjaz Krajnc"

This paper presents a two-stage microencapsulation process that uses pH modulation to enhance the thermal stability of microcapsules that consist of a melamine-formaldehyde (MF) shell and a butyl stearate core. In the first stage, the pH value was modulated between 6.0 and 8.

View Article and Find Full Text PDF

This work presents a study of the lysozyme release from crosslinked TEMPO nanocellulose (TOCNF) and alginate (ALG) hydrogels in a medium with different ionic strength and temperature. The main objective is to develop a mathematical model for a detailed study of the concurrent action of diffusion mechanism and adsorption/desorption kinetics. Model fit parameters provide important information about the initial (maximum) adsorption rate and its deceleration with increasing ionic strength of the release medium.

View Article and Find Full Text PDF

This study is the continuation of our previous work (Kopač, Abrami, et al., 2021) where the theoretical approach of polymer-polymer interaction to predict the crosslink density of hydrogels was introduced. This theory is further extended to the flow properties of hydrogels that allow the analysis of synergistic effect in hydrogel systems and the understanding of possible anomalous behavior of certain mixtures.

View Article and Find Full Text PDF

A simple relation between pendant groups of polymers in hydrogels is introduced to determine the crosslink density of (complex) hydrogel systems (mixtures of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) modified nanocellulose, alginate, scleroglucan and Laponite in addition of crosslinking agents). Furthermore, the rheological properties and their great potential connection to design complex hydrogel systems with desired properties have been thoroughly investigated. Hydrogel structures governing internal friction and flow resistance were described by the predominant effect of ionic, hydrogen, and electrostatic interactions.

View Article and Find Full Text PDF

The role of bacteriophage therapy in medicine has recently regained an important place. Oral phage delivery for gastrointestinal treatment, transport through the stomach, and fast release in the duodenum is one of such applications. In this work, an efficient polyHIPE/hydrogel system for targeted delivery of bacteriophages with rapid release at the target site is presented.

View Article and Find Full Text PDF

Ionically crosslinked hydrogels based on TEMPO nanocelullose and alginate were prepared to develop a generalized pH value, temperature and biopolymer concentration dependent mathematical model. The distinctive attention was in the demonstration of hydrogen bonds effects in the mathematical model, prevailing especially in the field of low crosslink densities of TEMPO nanocellulose hydrogel in acid medium. Accordingly, alginate hydrogels were subjected to the research as comparable samples with less significant hydrogel bonds effect.

View Article and Find Full Text PDF

Controlled release technology has a great potential in pharmaceutical and medical applications to ensure high efficacy of treatment, reduces the aggressive action of the medicines per patient, decreases the cost of treatment and reduces the side effects of the drug as well. In this research, hydrogels from biopolymers were designed for potential use in the drug release systems. The main objective was the manipulation of alginate and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) - oxidized cellulose nanofibers hydrogels crosslinking density by changing the biopolymer and crosslinker concentrations.

View Article and Find Full Text PDF

In this research, ultrasound was used in the crystallization process as an alternative to conventional spontaneous crystallization and seeding crystallization. The study was implemented on an active pharmaceutical ingredient ticagrelor, where the influence of ultrasound on its physical properties was evaluated. Process parameters of spontaneous crystallization, seeding crystallization and ultrasound-assisted crystallization were extensively studied while the pros and cons of each were adequately exposed.

View Article and Find Full Text PDF

Chemical and chromatographic stability of methacrylate-based monolithic columns bearing 3-N,N-diethylamino-2-hydroxypropyl (DEAE) and quarternary amine (QA) groups was studied. The leakage products from both monolithic columns were determined and the leakage of amines has been quantified in alkali solutions. Monolithic columns bearing QA functional groups being exposed to 1M sodium hydroxide solution for up to 3 months caused reduction of ion-exchange groups for approximately 12%, while for DEAE monolithic columns was only around 3% in 1 year.

View Article and Find Full Text PDF