Background: Smartwatches enable physicians to monitor symptoms in patients with knee osteoarthritis, their behavior, and their environment. Older adults experience fluctuations in their pain and related symptoms (mood, fatigue, and sleep quality) that smartwatches are ideally suited to capture remotely in a convenient manner.
Objective: The aim of this study was to evaluate satisfaction, usability, and compliance using the real-time, online assessment and mobility monitoring (ROAMM) mobile app designed for smartwatches for individuals with knee osteoarthritis.
Background: Older adults who experience pain are more likely to reduce their community and life-space mobility (ie, the usual range of places in an environment in which a person engages). However, there is significant day-to-day variability in pain experiences that offer unique insights into the consequences on life-space mobility, which are not well understood. This variability is complex and cannot be captured with traditional recall-based pain surveys.
View Article and Find Full Text PDFBackground: Chronic pain, including arthritis, affects about 100 million adults in the United States. Complexity and diversity of the pain experience across time and people and its fluctuations across and within days show the need for valid pain reports that do not rely on patient's long-term recall capability. Smartwatches can be used as digital ecological momentary assessment (EMA) tools for real-time collection of pain scores.
View Article and Find Full Text PDFBackground: Wearable accelerometers have greatly improved measurement of physical activity, and the increasing popularity of smartwatches with inherent acceleration data collection suggest their potential use in the physical activity research domain; however, their use needs to be validated.
Objective: This study aimed to assess the validity of accelerometer data collected from a Samsung Gear S smartwatch (SGS) compared with an ActiGraph GT3X+ (GT3X+) activity monitor. The study aims were to (1) assess SGS validity using a mechanical shaker; (2) assess SGS validity using a treadmill running test; and (3) compare individual activity recognition, location of major body movement detection, activity intensity detection, locomotion recognition, and metabolic equivalent scores (METs) estimation between the SGS and GT3X+.
Background: There has been an increasing interest in understanding the usefulness of wrist-based accelerometer data for physical activity (PA) assessment due to the ease of use and higher user compliance than other body placements. PA assessment studies have relied on machine learning methods which take accelerometer data in forms of variables, or feature vectors.
Methods: In this work, we introduce automated shape feature derivation methods to transform epochs of accelerometer data into feature vectors.
Smartphone and smartwatch technology is changing the transmission and monitoring landscape for patients and research participants to communicate their healthcare information in real time. Flexible, bidirectional and real-time control of communication allows development of a rich set of healthcare applications that can provide interactivity with the participant and adapt dynamically to their changing environment. Additionally, smartwatches have a variety of sensors suitable for collecting physical activity and location data.
View Article and Find Full Text PDFActigraphy has attracted much attention for assessing physical activity in the past decade. Many algorithms have been developed to automate the analysis process, but none has targeted a general model to discover related features for detecting or predicting mobility function, or more specifically, mobility impairment and major mobility disability (MMD). Men (N = 357) and women (N = 778) aged 70-89 years wore a tri-axial accelerometer (Actigraph GT3X) on the right hip during free-living conditions for 8.
View Article and Find Full Text PDF