The exploration of our solar system to characterize the molecular organic inventory will enable the identification of potentially habitable regions and initiate the search for biosignatures of extraterrestrial life. However, it is challenging to perform the required high-resolution, high-sensitivity chemical analyses in space and in planetary environments. To address this challenge, we have developed a microfluidic organic analyzer (MOA) instrument that consists of a multilayer programmable microfluidic analyzer (PMA) for fluidic processing at the microliter scale coupled with a microfabricated glass capillary electrophoresis (CE) wafer for separation and analysis of the sample components.
View Article and Find Full Text PDFA programmable microfluidic organic analyzer was developed for detecting life signatures beyond Earth and clinical monitoring of astronaut health. Extensive environmental tests, including various gravitational environments, are required to confirm the functionality of this analyzer and advance its overall Technology Readiness Level. This work examines how the programmable microfluidic analyzer performed under simulated Lunar, Martian, zero, and hypergravity conditions during a parabolic flight.
View Article and Find Full Text PDFFluorescence labeling of biomolecules and fluorescence detection platforms provide a powerful approach to high-sensitivity bioanalysis. Reactive probes can be chosen to target specific functional groups to enable selective analysis of a chosen class of analytes. Particularly, when targeting trace levels of analytes, it is important to optimize the reaction chemistry to maximize the labeling efficiency and minimize the background.
View Article and Find Full Text PDFEnceladus is a prime candidate in the solar system for in-depth astrobiological studies searching for habitability and life because it has a liquid water ocean with significant organic content and ongoing cryovolcanic activity. The presence of ice plumes that jet up through fissures in the ice crust covering the sub-surface ocean, enables remote sampling and in-situ analysis via a fly-by mission. However, capture and transport of organic materials to organic analyzers presents distinctive challenges as it is unknown whether, and to what extent, organic molecules imbedded in ice particles can be captured and survive hypervelocity impacts.
View Article and Find Full Text PDFMicrofabricated glass microfluidic and Capillary Electrophoresis (CE) devices have been utilized in a wide variety of applications over the past thirty years. At the Berkeley Space Sciences Laboratory, we are working to further expand this technology by developing analytical instruments to chemically explore our solar system. This effort requires improving the quality and reliability of glass microfabrication through quality control procedures at every stage of design and manufacture.
View Article and Find Full Text PDF