Publications by authors named "Matilde Sanchez-Pena"

Microarray experiments are capable of determining the relative expression of tens of thousands of genes simultaneously, thus resulting in very large databases. The analysis of these databases and the extraction of biologically relevant knowledge from them are challenging tasks. The identification of potential cancer biomarker genes is one of the most important aims for microarray analysis and, as such, has been widely targeted in the literature.

View Article and Find Full Text PDF

Objective: A new method using Multiple Criteria Optimization (MCO) proposed by our research group has shown evidence of being able to identify gene-based biomarkers for the detection of cancer using microarray data. Herein, we explore this method, considering more than two conflicting criteria for the MCO problem. Using this method would result in stronger outcomes when using different results from microarray analyses.

View Article and Find Full Text PDF

Diagnosing cancer using microarray analysis to study differential gene expression has been a recent focus of intense research Although several very sophisticated analysis tools have been developed with this aim in mind, it still remains a challenge to keep these methods free of parametric adjustments as well as maintain their transparency for the final user. Nonparametric methods in general have been associated with these last two characteristics, thus becoming attractive tools for microarray analysis in cancer research. In particular, diagnosing cancer via microarray analysis is an exercise whereby tissue is characterized according to its differential gene expression levels.

View Article and Find Full Text PDF