Publications by authors named "Matilde Le Bail"

The N-Methyl D-Aspartic acid (NMDA) receptors (NMDAR) are key tetrameric ionotropic glutamate receptors that transduce glutamatergic signals throughout the central nervous system (CNS) and spinal cord. Although NMDARs are diverse in their subunit composition, subcellular localization, and biophysical and pharmacological properties, their activation always requires the binding of a co-agonist that has long been thought to be glycine. However, intense research over the last decade has challenged this classical model by showing that another amino acid, d-serine, is the preferential co-agonist for a subset of synaptic NMDARs in many areas of the adult brain.

View Article and Find Full Text PDF

NMDA receptors (NMDARs) require the coagonists D-serine or glycine for their activation, but whether the identity of the coagonist could be synapse specific and developmentally regulated remains elusive. We therefore investigated the contribution of D-serine and glycine by recording NMDAR-mediated responses at hippocampal Schaffer collaterals (SC)-CA1 and medial perforant path-dentate gyrus (mPP-DG) synapses in juvenile and adult rats. Selective depletion of endogenous coagonists with enzymatic scavengers as well as pharmacological inhibition of endogenous D-amino acid oxidase activity revealed that D-serine is the preferred coagonist at SC-CA1 mature synapses, whereas, unexpectedly, glycine is mainly involved at mPP-DG synapses.

View Article and Find Full Text PDF