It is generally assumed that contact angle hysteresis of superhydrophobic surfaces scales with liquid-solid contact fraction, however, its experimental verification has been problematic due to the limited accuracy of contact angle and sliding angle goniometry. Advances in cantilever-based friction probes enable accurate droplet friction measurements down to the nanonewton regime, thus suiting much better for characterizing the wetting of superhydrophobic surfaces than contact angle hysteresis measurements. This work quantifies the relationship between droplet friction and liquid-solid contact fraction, through theory and experimental validation.
View Article and Find Full Text PDFSuperhydrophobic surfaces are often seen as frictionless materials, on which water is highly mobile. Understanding the nature of friction for such water-repellent systems is central to further minimize resistance to motion and energy loss in applications. For slowly moving drops, contact-line friction has been generally considered dominant on slippery superhydrophobic surfaces.
View Article and Find Full Text PDFFriction determines whether liquid droplets slide off a solid surface or stick to it. Surface heterogeneity is generally acknowledged as the major cause of increased contact angle hysteresis and contact line friction of droplets. Here we challenge this long-standing premise for chemical heterogeneity at the molecular length scale.
View Article and Find Full Text PDFAerophilic surfaces immersed underwater trap films of air known as plastrons. Plastrons have typically been considered impractical for underwater engineering applications due to their metastable performance. Here, we describe aerophilic titanium alloy (Ti) surfaces with extended plastron lifetimes that are conserved for months underwater.
View Article and Find Full Text PDFSuperhydrophobic coatings have extraordinary properties like self-cleaning and staying dry, and have recently appeared on industrial and consumer markets. The stochastic nature of the coating components and coating processes (e.g.
View Article and Find Full Text PDFIt is well known that an increased viscosity slows down fluid dynamics. Here we show that this intuitive rule is not general and can fail for liquids flowing in confined liquid-repellent systems. A gravity-driven, highly viscous glycerol droplet inside a sealed superhydrophobic capillary is moving more than 10 times faster than a water droplet with three-orders-of-magnitude lower viscosity.
View Article and Find Full Text PDFFerrofluids exhibit a unique combination of liquid properties and strong magnetic response, which leads to a rich variety of interesting functional properties. Here, the magnetic-field-induced splitting of ferrofluid droplets immersed in an immiscible liquid is presented, and related fascinating dynamics and applications are discussed. A magnetic field created by a permanent magnet induces instability on a mother droplet, which divides into two daughter droplets in less than 0.
View Article and Find Full Text PDFMeasuring forces from the piconewton to millinewton range is of great importance for the study of living systems from a biophysical perspective. The use of flexible micropipettes as highly sensitive force probes has become established in the biophysical community, advancing our understanding of cellular processes and microbial behavior. The micropipette force sensor (MFS) technique relies on measurement of the forces acting on a force-calibrated, hollow glass micropipette by optically detecting its deflections.
View Article and Find Full Text PDFThe inability of traditional chemotherapeutics to reach cancer tissue reduces the treatment efficacy and leads to adverse effects. A multifunctional nanovector was developed consisting of porous silicon, superparamagnetic iron oxide, calcium carbonate, doxorubicin and polyethylene glycol. The particles integrate magnetic properties with the capacity to retain drug molecules inside the pore matrix at neutral pH to facilitate drug delivery to tumor tissues.
View Article and Find Full Text PDFThe damped oscillations of liquid-immersed ferrofluid sessile droplets were studied with high-speed imaging experiments and analytical modeling to develop a novel microrheology technique. Droplet oscillations were induced with an external magnetic field, thereby avoiding transients in the resulting vibrational response of the droplet. By following the droplet relaxation with a high-speed camera, the frequency and relaxation time of the damped harmonic oscillations were measured.
View Article and Find Full Text PDFCaffeine is a small amphiphilic molecule, which is widely consumed as a stimulant to prevent fatigue, but is also used as a common drug adjuvant in modern medicine. Here, we show that caffeine interacts with unsaturated lipid membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). By combining X-ray diffraction and molecular dynamics simulations, we present evidence that caffeine partitions in lipid membranes and locates at the head group-tail group interface of the bilayers.
View Article and Find Full Text PDFOne of the hallmarks of Alzheimer's disease is the formation of protein plaques in the brain, which mainly consist of amyloid-β peptides of different lengths. While the role of these plaques in the pathology of the disease is not clear, the mechanism behind peptide aggregation is a topic of intense research and discussion. Because of their simplicity, synthetic membranes are promising model systems to identify the elementary processes involved.
View Article and Find Full Text PDFThe Diels-Alder [4 + 2] cycloaddition between furan- and maleimide-functional polyanions was used to form cross-linked synthetic polymer hydrogels. Poly(methyl vinyl ether-alt-maleic anhydride) was reacted with furfurylamine or N-(2-aminoethyl)maleimide in acetonitrile to form pairs of furan- and maleimide-functionalized poly(methyl vinyl ether-alt-maleic acid)s. Mixtures of these mutually reactive polyanions in water gelled within 15 min to 18 h, depending on degree of functionalization and polymer concentrations.
View Article and Find Full Text PDFThe viscoelastic material properties of the model organism C. elegans were probed with a micropipette deflection technique and modelled with the standard linear solid model. Dynamic relaxation measurements were performed on the millimetric nematode to investigate its viscous characteristics in detail.
View Article and Find Full Text PDFWith a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2014
We probe the viscous forces involved in the undulatory swimming of the model organism C. elegans. Using micropipette deflection, we attain direct measurements of lateral and propulsive forces produced in response to the motion of the worm.
View Article and Find Full Text PDFThe tangling of two tethered microswimming worms serving as the ends of "active strings" is investigated experimentally and modeled analytically. C. elegans nematodes of similar size are caught by their tails using micropipettes and left to swim and interact at different separations over long times.
View Article and Find Full Text PDFThe capillary levelling of cylindrical holes in viscous polystyrene films was studied using atomic force microscopy as well as quantitative analytical scaling arguments based on thin film theory and self-similarity. The relaxation of the holes was shown to consist of two different time regimes: an early regime where opposing sides of the hole do not interact, and a late regime where the hole is filling up. For the latter, the self-similar asymptotic profile was derived analytically and shown to be in excellent agreement with experimental data.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2013
The surface of a thin liquid film with nonconstant curvature flattens as a result of capillary forces. While this leveling is driven by local curvature gradients, the global boundary conditions greatly influence the dynamics. Here, we study the evolution of rectangular trenches in a polystyrene nanofilm.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2013
Undulatory motion is common to many creatures across many scales, from sperm to snakes. These organisms must push off against their external environment, such as a viscous medium, grains of sand, or a high-friction surface; additionally they must work to bend their own body. A full understanding of undulatory motion, and locomotion in general, requires the characterization of the material properties of the animal itself.
View Article and Find Full Text PDFThe characterization of roughness at the nanoscale by the means of atomic force microscopy (AFM) was performed on high aspect ratio glancing angle deposited titanium thin films. With the use of scanning electron microscopy as well as x-ray photoelectron spectroscopy, it was shown that the AFM measurements gave rise to incorrect roughness values for the films consisting of the highest aspect ratio structures. By correcting for this experimental artefact, the difference between the saturated roughness value of a film grown with conventional physical vapour deposition and films grown with a glancing angle of deposition was shown to behave as a power law function of the deposition angle, with a saturated roughness exponent of κ = 7.
View Article and Find Full Text PDF