Publications by authors named "Matias de Vas"

Article Synopsis
  • A significant portion of intellectual disability cases have unknown genetic causes, but de novo mutations (DNMs) in genes account for up to 40% of them.
  • Researchers sequenced genomes from 21 individuals with intellectual disabilities and their parents, discovering that regulatory DNMs are more abundant in fetal brain enhancers compared to adult brain enhancers.
  • The study revealed that these regulatory mutations are linked to genes important for brain development, indicating that they significantly contribute to the causes of intellectual disability.
View Article and Find Full Text PDF

The biological purpose of long non-coding RNAs (lncRNAs) is poorly understood. Haploinsufficient mutations in HNF1A homeobox A (HNF1A), encoding a homeodomain transcription factor, cause diabetes mellitus. Here, we examine HASTER, the promoter of an lncRNA antisense to HNF1A.

View Article and Find Full Text PDF

Defects in transcriptional regulators of pancreatic exocrine differentiation have been implicated in pancreatic tumorigenesis, but the molecular mechanisms are poorly understood. The locus encoding the transcription factor HNF1A harbors susceptibility variants for pancreatic ductal adenocarcinoma (PDAC), while KDM6A, encoding Lysine-specific demethylase 6A, carries somatic mutations in PDAC. Here, we show that pancreas-specific Hnf1a null mutant transcriptomes phenocopy those of Kdm6a mutations, and both defects synergize with Kras to cause PDAC with sarcomatoid features.

View Article and Find Full Text PDF

Background & Aims: The exocrine pancreas consists of acinar cells that produce digestive enzymes transported to the intestine through a branched ductal epithelium. Chronic pancreatitis is characterized by progressive inflammation, fibrosis, and loss of acinar tissue. These changes of the exocrine tissue are risk factors for pancreatic cancer.

View Article and Find Full Text PDF

While insulin has mitogenic effects in many cell types, its effects on β cells remain elusive. In this issue of Cell Metabolism, Szabat et al. (2015) genetically block insulin production in adult β cells and show that this leads to a relief of ER stress, AKT activation, and increased β cell proliferation.

View Article and Find Full Text PDF

Heterozygous mutations in the human HNF1B gene are associated with maturity-onset diabetes of the young type 5 (MODY5) and pancreas hypoplasia. In mouse, Hnf1b heterozygous mutants do not exhibit any phenotype, whereas the homozygous deletion in the entire epiblast leads to pancreas agenesis associated with abnormal gut regionalization. Here, we examine the specific role of Hnf1b during pancreas development, using constitutive and inducible conditional inactivation approaches at key developmental stages.

View Article and Find Full Text PDF

Trypanosoma cruzi flavoproteins TcCPR-A, TcCPR-B and TcCPR-C are members of the NADPH-dependent cytochrome P-450 reductase family expressed in the parasite. Epimastigotes over-expressing TcCPR-B and TcCPR-C showed enhanced ergosterol biosynthesis and increased NADP(+)/NADPH ratio. Transgenic parasites with augmented ergosterol content presented a higher membrane order with a corresponding diminished bulk-phase endocytosis.

View Article and Find Full Text PDF

Cytochrome P450 hemoproteins (CYPs) are involved in the synthesis of endogenous compounds such as steroids, fatty acids and prostaglandins as well as in the activation and detoxification of foreign compounds including therapeutic drugs. Cytochrome P450 reductase (CPR, E.C.

View Article and Find Full Text PDF