Mammalian hippocampal circuits undergo extensive remodeling through adult neurogenesis. While this process has been widely studied, the specific contribution of adult-born granule cells (aGCs) to spatial operations in the hippocampus remains unknown. Here, we show that optogenetic activation of 4-week-old (young) aGCs in free-foraging mice produces a non-reversible reconfiguration of spatial maps in proximal CA3 while rarely evoking neural activity.
View Article and Find Full Text PDFWe know little about mammalian anemotaxis or wind sensing. Recently, however, Hartmann and colleagues showed whisker-based anemotaxis in rats. To investigate how whiskers sense airflow, we first tracked whisker tips in anesthetized rats under low (0.
View Article and Find Full Text PDFThe Octodon degus is a South American rodent that is receiving increased attention as a potential model of aging and sporadic late-onset Alzheimer's disease (AD). Impairments in spatial memory tasks in Octodon degus have been reported in relation to either advanced AD-like disease or hippocampal lesion, opening the way to investigate how the function of hippocampal networks affects behavior across AD stages. However, no characterization of hippocampal electrophysiology exists in this species.
View Article and Find Full Text PDFResearch on retrieval-induced malleability of maladaptive emotional memories has been mostly focused on the effect of drugs and extinction (i.e. post-retrieval extinction).
View Article and Find Full Text PDFTwo experiments using rats in a contextual fear memory preparation compared two approaches to reduce conditioned fear: (1) pharmacological reconsolidation blockade and (2) reactivation-plus-extinction training. In Experiment 1, we explored different combinations of reactivation-plus-extinction parameters to reduce conditioned fear and attenuate reacquisition. In Experiment 2, memory reactivation was followed by extinction training or administration of midazolam (MDZ) (vs.
View Article and Find Full Text PDF