Publications by authors named "Matiar Jafari"

Background Context: Postoperative infection after spinal deformity correction in pediatric patients is associated with significant costs. Identifying risk factors associated with postoperative infection would help surgeons identify high-risk patients that may require interventions to minimize infection risk.

Purpose: To investigate risk factors associated with 30-day postoperative infection in pediatric patients who have received posterior arthrodesis for spinal deformity correction.

View Article and Find Full Text PDF

Ventriculoperitoneal (VP) shunts divert cerebrospinal fluid (CSF) out of cerebral ventricles in patients with hydrocephalus or elevated intracranial pressure (ICP). Despite high failure rates, there exist limited clinically viable solutions for long-term and continuous outpatient monitoring of CSF flow rate through VP shunts. We present a novel, low-power method for sensing analog CSF flow rate through a VP shunt premised on induced spatial electrical charge variation.

View Article and Find Full Text PDF

Background: Sympathetic-mediated vasoconstriction from the superior cervical ganglion (SCG) is a significant contributor to cerebral vasospasm. Inhibition of the SCG has been shown to improve cerebral blood flow and reverse cerebral vasospasm in swine models. We evaluated the efficacy of a novel minimally invasive endovascular approach to target and pharmacologically inhibit the SCG, using a Micro-Infusion Device for transmural drug delivery.

View Article and Find Full Text PDF

In the human posterior parietal cortex (PPC), single units encode high-dimensional information with representations that enable small populations of neurons to encode many variables relevant to movement planning, execution, cognition, and perception. Here, we test whether a PPC neuronal population previously demonstrated to encode visual and motor information is similarly engaged in the somatosensory domain. We recorded neurons within the PPC of a human clinical trial participant during actual touch presentation and during a tactile imagery task.

View Article and Find Full Text PDF

Classical systems neuroscience positions primary sensory areas as early feed-forward processing stations for refining incoming sensory information. This view may oversimplify their role given extensive bi-directional connectivity with multimodal cortical and subcortical regions. Here we show that single units in human primary somatosensory cortex encode imagined reaches in a cognitive motor task, but not other sensory-motor variables such as movement plans or imagined arm position.

View Article and Find Full Text PDF

Millions of people worldwide are afflicted with paralysis from a disruption of neural pathways between the brain and the muscles. Because their cortical architecture is often preserved, these patients are able to plan movements despite an inability to execute them. In such people, brain machine interfaces have great potential to restore lost function through neuroprosthetic devices, circumventing dysfunctional corticospinal circuitry.

View Article and Find Full Text PDF

Pioneering work with nonhuman primates and recent human studies established intracortical microstimulation (ICMS) in primary somatosensory cortex (S1) as a method of inducing discriminable artificial sensation. However, these artificial sensations do not yet provide the breadth of cutaneous and proprioceptive percepts available through natural stimulation. In a tetraplegic human with two microelectrode arrays implanted in S1, we report replicable elicitations of sensations in both the cutaneous and proprioceptive modalities localized to the contralateral arm, dependent on both amplitude and frequency of stimulation.

View Article and Find Full Text PDF

Fragile X Syndrome (FXS) and the Fmr1 knockout (KO) mouse model of this disorder exhibit abnormal dendritic spines in neocortex, but the degree of spine disturbances in hippocampus is not clear. The present studies tested if the mutation influences dendritic branching and spine measures for CA1 pyramidal cells in Fmr1 KO and wild-type (WT) mice provided standard or enriched environment (EE) housing. Automated measures from 3D reconstructions of green fluorescent protein (GFP)-labeled cells showed that spine head volumes were ∼ 40% lower in KOs when compared with WTs in both housing conditions.

View Article and Find Full Text PDF

Objective: Chronic nerve compression (CNC) injuries occur when peripheral nerves are subjected to sustained mechanical forces, with increasing evidence implicating Schwann cells as key mediators. Integrins, a family of transmembrane adhesion molecules that are capable of intracellular signaling, have been implicated in a variety of biological processes such as myelination and nerve regeneration. In this study, we seek to define the physical stimuli mediating demyelination and to determine whether integrin plays a role in the demyelinating response.

View Article and Find Full Text PDF

Glucocorticoids affect learning and memory but the cellular mechanisms involved are poorly understood. The present studies tested if the stress-responsive glucocorticoid receptor (GR) is present and regulated within dendritic spines, and influences local signaling to the actin cytoskeleton. In hippocampal field CA1, 13 % of synapses contained GR-immunoreactivity.

View Article and Find Full Text PDF

The superiority of spaced vs. massed training is a fundamental feature of learning. Here, we describe unanticipated timing rules for the production of long-term potentiation (LTP) in adult rat hippocampal slices that can account for one temporal segment of the spaced trials phenomenon.

View Article and Find Full Text PDF