The substantia nigra pars reticulata (SNpr), an output structure of the basal ganglia, is hypothesized to gate movement execution. Previous studies in the eye movement system focusing mostly on saccades have reported that SNpr neurons are tonically active and either pause or increase their firing during movements, consistent with the gating role. We recorded activity in the SNpr of two monkeys during smooth pursuit and saccadic eye movements.
View Article and Find Full Text PDFThe basal ganglia and the cerebellum are major subcortical structures in the motor system. The basal ganglia have been cast as the reward center of the motor system, whereas the cerebellum is thought to be involved in adjusting sensorimotor parameters. Recent findings of reward signals in the cerebellum have challenged this dichotomous view.
View Article and Find Full Text PDFFront Neurosci
January 2024
Reward is essential for shaping behavior. Using sensory cues to imply forthcoming rewards, previous studies have demonstrated powerful effects of rewards on behavior. Nevertheless, the impact of reward on the sensorimotor transformation, particularly when reward is linked to behavior remains uncertain.
View Article and Find Full Text PDFCorrelated activity between neurons can cause variability in behavior across trials, as trial-by-trial cofluctuations can propagate downstream through the motor system. The extent to which correlated activity affects behavior depends on the properties of the translation of the population activity into movement. A major hurdle in studying the effects of noise correlations on behavior is that in many cases this translation is unknown.
View Article and Find Full Text PDFUnlabelled: Control of movement requires the coordination of multiple brain areas, each containing populations of neurons that receive inputs, process these inputs via recurrent dynamics, and then relay the processed information to downstream populations. Information transmission between neural populations could occur through either coordinated changes in firing rates or the precise transmission of spike timing. We investigate the nature of the code for transmission of signals to downstream areas from a part of the cerebellar cortex that is crucial for the accurate execution of a quantifiable motor behavior.
View Article and Find Full Text PDFDuring fixation and between saccades, our eyes undergo diffusive random motion called fixational drift. The role of fixational drift in visual coding and inference has been debated in the past few decades, but the mechanisms that underlie this motion remained unknown. In particular, it has been unclear whether fixational drift arises from peripheral sources, or from central sources within the brain.
View Article and Find Full Text PDFMotor adaptation is commonly thought to be a trial-and-error process in which the accuracy of movement improves with repetition of behavior. We challenged this view by testing whether erroneous movements are necessary for motor adaptation. In the eye movement system, the association between movements and errors can be disentangled, since errors in the predicted stimulus trajectory can be perceived even without movements.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2021
We studied correlated firing between motor thalamic and cortical cells in monkeys performing a delayed-response reaching task. Simultaneous recording of thalamocortical activity revealed that around movement onset, thalamic cells were positively correlated with cell activity in the primary motor cortex but negatively correlated with the activity of the premotor cortex. The differences in the correlation contrasted with the average neural responses, which were similar in all three areas.
View Article and Find Full Text PDFThe cerebellum exhibits both motor and reward-related signals. However, it remains unclear whether reward is processed independently from the motor command or might reflect the motor consequences of the reward drive. To test how reward-related signals interact with sensorimotor processing in the cerebellum, we recorded Purkinje cell simple spike activity in the cerebellar floccular complex while monkeys were engaged in smooth pursuit eye movement tasks.
View Article and Find Full Text PDFJ Neurosci Methods
December 2019
Background: The challenge of spike sorting has been addressed by numerous electrophysiological studies. These methods tend to focus on the information conveyed by the high frequencies, but ignore the potentially informative signals at lower frequencies. Activation of Purkinje cells in the cerebellum by input from the climbing fibers results in a large amplitude dendritic spike concurrent with a high-frequency burst known as a complex spike.
View Article and Find Full Text PDFExpectation of reward potentiates sensorimotor transformations to drive vigorous movements. One of the main challenges in studying reward is to determine how representations of reward interact with the computations that drive behavior. We recorded activity in smooth pursuit neurons in the frontal eye field (FEF) of two male rhesus monkeys while controlling the eye speed by manipulating either reward size or target speed.
View Article and Find Full Text PDFThe prevailing model of cerebellar learning states that climbing fibers (CFs) are both driven by, and serve to correct, erroneous motor output. However, this model is grounded largely in studies of behaviors that utilize hardwired neural pathways to link sensory input to motor output. To test whether this model applies to more flexible learning regimes that require arbitrary sensorimotor associations, we developed a cerebellar-dependent motor learning task that is compatible with both mesoscale and single-dendrite-resolution calcium imaging in mice.
View Article and Find Full Text PDFWe investigated the composition of preparatory activity of frontal eye field (FEF) neurons in monkeys performing a pursuit target selection task. In response to the orthogonal motion of a large and a small reward target, monkeys initiated pursuit biased toward the direction of large reward target motion. FEF neurons exhibited robust preparatory activity preceding movement initiation in this task.
View Article and Find Full Text PDFSubthalamic nucleus field potentials have attracted growing research and clinical interest over the last few decades. However, it is unclear whether subthalamic field potentials represent locally generated neuronal subthreshold activity or volume conductance of the organized neuronal activity generated in the cortex. This study aimed at understanding of the physiological origin of subthalamic field potentials and determining the most accurate method for recording them.
View Article and Find Full Text PDFAnalysis of the neural code for sensory-motor latency in smooth pursuit eye movements reveals general principles of neural variation and the specific origin of motor latency. The trial-by-trial variation in neural latency in MT comprises a shared component expressed as neuron-neuron latency correlations and an independent component that is local to each neuron. The independent component arises heavily from fluctuations in the underlying probability of spiking, with an unexpectedly small contribution from the stochastic nature of spiking itself.
View Article and Find Full Text PDFA single extra spike makes a difference. Here, the size of the eye velocity in the initiation of smooth eye movements in the right panel depends on whether a cerebellar Purkinje cell discharges 3 (red), 4 (green), 5 (blue), or 6 (black) spikes in the 40-ms window indicated by the gray shading in the rasters on the left. Spike trains are rich in information that can be extracted to guide behaviors at millisecond time resolution or across longer time intervals.
View Article and Find Full Text PDFWe have studied how rewards modulate the occurrence of microsaccades by manipulating the size of an expected reward and the location of the cue that sets the expectations for future reward. We found an interaction between the size of the reward and the location of the cue. When monkeys fixated on a cue that signaled the size of future reward, the frequency of microsaccades was higher if the monkey expected a large vs.
View Article and Find Full Text PDFAwareness of its rich structural pathways has earned the external segment of the globus pallidus (GPe) recognition as a central figure within the basal ganglia circuitry. Interestingly, GPe neurons are uniquely identified by the presence of prominent pauses interspersed among a high-frequency discharge rate of 50-80 spikes/s. These pauses have an average pause duration of 620 ms with a frequency of 13/min, yielding an average pause activity (probability of a GPe neuron being in a pause) of (620 × 13)/(60 × 1000) = 0.
View Article and Find Full Text PDFContext dependence is a key feature of cortical-basal ganglia circuit activity, and in songbirds the cortical outflow of a basal ganglia circuit specialized for song, LMAN, shows striking increases in trial-by-trial variability and bursting when birds sing alone rather than to females. To reveal where this variability and its social regulation emerge, we recorded stepwise from corticostriatal (HVC) neurons and their target spiny and pallidal neurons in Area X. We find that corticostriatal and spiny neurons both show precise singing-related firing across both social settings.
View Article and Find Full Text PDFWe have used an analysis of signal and variation in motor behavior to elucidate the organization of the cerebellar and brain stem circuits that control smooth pursuit eye movements. We recorded from the abducens nucleus and identified floccular target neurons (FTNs) and other, non-FTN vestibular neurons. First, we assessed neuron-behavior correlations, defined as the trial-by-trial correlation between the variation in neural firing and eye movement, in brain stem neurons.
View Article and Find Full Text PDFNeural integration converts transient events into sustained neural activity. In the smooth pursuit eye movement system, neural integration is required to convert cerebellar output into the sustained discharge of extraocular motoneurons. We recorded the expression of integration in the time-varying firing rates of cerebellar and brainstem neurons in the monkey during pursuit of step-ramp target motion.
View Article and Find Full Text PDF