A major limitation of electrical field-flow fractionation (ElFFF) is the polarization of the electrodes that occurs when using an ionic carrier liquid. As there is great interest in using ElFFF with biological materials and biological materials typically have high ionic strengths and high osmotic concentrations, we explore the effect of concentration for phosphate buffered saline (PBS), a typical ionic medium for biological samples, and for two nonionic materials common in bioparticle analysis: isopropanol (IPA) and sucrose. Their effect on retention and separations in ElFFF for increasing concentrations was observed.
View Article and Find Full Text PDFThe potential of biased cyclical electrical field-flow fractionation (BCyElFFF), which applies the positive cycle voltage longer than the negative cycle voltage, for characterization of submicron particles, was investigated. Parameters affecting separation and retention such as voltage, frequency, and duty cycle were examined. The results suggest that the separation mechanism in BCyElFFF in many cases is more related to the size of particles, as is the case with normal ElFFF, in the studied conditions, than the electrophoretic mobility, which is what the theory predicts for CyElFFF.
View Article and Find Full Text PDF