Publications by authors named "Mathison R"

Discovered from soil in a flower planter in Pocatello, Idaho and using , SallyK is a lytic bacteriophage with a siphovirus morphology. It has a 62,883 bp-long genome with 103 putative genes. Based on gene content similarity to actinobacteriophages, SallyK is assigned to cluster EG.

View Article and Find Full Text PDF

Discovered in Pocatello, Idaho, soil near a tomato garden, siphovirus KillerTomato infects NRRL B-24224. KillerTomato is a lytic cluster EE phage with a 17,442-bp genome and 68.6% GC content.

View Article and Find Full Text PDF

Electrochemical synthesis of organic chemical commodities provides an alternative to conventional thermochemical manufacturing and enables the direct use of renewable electricity to reduce greenhouse gas emissions from the chemical industry. We discuss electrochemical synthesis approaches that use abundant carbon feedstocks for the production of the largest petrochemical precursors and basic organic chemical products: light olefins, olefin oxidation derivatives, aromatics, and methanol. First, we identify feasible routes for the electrochemical production of each commodity while considering the reaction thermodynamics, available feedstocks, and competing thermochemical processes.

View Article and Find Full Text PDF

Over 1.5 million new jobs need to be filled by 2026 for medical assistants, nursing aides, and home care aides, many of which will work in the long-term services and supports (LTSS) sector. Using 16 years of data from the American Time Use Survey, we examined the financial vulnerability of high-skill and low-skill LTSS workers in comparison with other health care workers, while providing insight into their well-being by measuring time spent on work and nonwork activities.

View Article and Find Full Text PDF

Salivary glands are involved in the production and exocrine and endocrine secretion of biologically active proteins, polypeptides, and hormones involved in growth and differentiation, homeostasis, and digestion. We have previously studied the prohormone submandibular rat 1 (SMR1), product of the Vcsa1 gene, which is highly expressed in the testes and salivary glands of rats, and can be cleaved to produce polypeptides with analgesic, erectile function, and anti-inflammatory activities. Humans lack the Vcsa1 gene, but homologous sequences and functions for analgesia and erectile function exist in the human genes Prol1, SMR3a, and SMR3b located on the human chromosomal region close to where Vcsa1 lies in the rat.

View Article and Find Full Text PDF

The cervical sympathetic nerves which innervate the medial basal hypothalamus-hypophyseal complex, primary and secondary lymph organs, and numerous glands, such as the pineal, thyroid, parathyroid and salivary glands form a relevant neuroimmunoendocrine structure that is involved in the regulation of systemic homeostasis. The superior cervical ganglia and the submandibular glands form a 'neuroendocrine axis' called the cervical sympathetic trunk submandibular gland (CST-SMG) axis. The identification of this axis usurps the traditional view of salivary glands as accessory digestive structures and reinforces the view that they are important sources of systemically active immunoregulatory and anti-inflammatory factors whose release is intimately controlled by the autonomic nervous system, and in particular the sympathetic branch.

View Article and Find Full Text PDF

Objective: In this study, we have evaluated the effects of stress on functional and proteomic changes in submandibular saliva of rats.

Design: Male adult rats were divided in three groups: IMO (2 h/day of immobilization for 7 days), LL (constant light during 20 days), C (unstressed controls submitted to 14 h light-10h dark cycle). Body weight, food intake and the dry weight of submandibular gland were recorded.

View Article and Find Full Text PDF

The limitations of steroidal and non steroidal anti-inflammatory drugs have prompted investigation into other biologically based therapeutics, and identification of immune selective anti-inflammatory agents of salivary origin. The traditional view of salivary glands as accessory digestive structures is changing as their importance as sources of systemically active immunoregulatory and anti-inflammatory factors is recognized. Salivary gland involvement in maintenance of whole body homeostasis is regulated by the nervous system and thus constitutes a "neuroendocrine axis".

View Article and Find Full Text PDF

We have previously shown that galantide ameliorates mild acute pancreatitis (AP), and the salivary tripeptide analogue, feG, ameliorates severe AP in mice. In this study, we compared the efficacy of combining galantide and feG with that of the individual agents in treating mild AP induced in mice with 7-hourly caerulein injections. Galantide was co-administered with each caerulein injection commencing with the first injection.

View Article and Find Full Text PDF

The autonomic nervous system regulates the secretion of bioactive proteins and peptides from salivary glands that can be important in systemic physiological responses. The prohormone submandibular rat-1, which is highly expressed in rat submandibular glands, can be cleaved to produce polypeptides with analgesic and anti-inflammatory activities. Human genes related to submandibular rat-1 have conserved biological functions and are potentially important in pain suppression, erectile function, and inflammation.

View Article and Find Full Text PDF

The tripeptide FEG (Phe-Glu-Gly) and its D-isomer feG are potent anti-inflammatory peptides that reduce type I immediate hypersensitivity reactions (antigen-induced contraction of sensitized intestine), and inhibit the binding of CD16b (FCyRIII) antibody to human neutrophils. However, significant differences exist in the structure activity relationships (SAR) with FEG-like peptides for these two activities. By comparing biological activities to the topological features of FEG and its analogues this study identifies the distinguishing features of the peptides that explain the differential SAR on the immediate hypersensitivity reaction and CD16b antibody binding.

View Article and Find Full Text PDF

Background: The tripeptide feG (D-Phe-D-Glu-Gly) is a potent anti-inflammatory peptide that reduces the severity of type I immediate hypersensitivity reactions, and inhibits neutrophil chemotaxis and adhesion to tissues. feG also reduces the expression of beta1-integrin on circulating neutrophils, but the counter ligands involved in the anti-adhesive actions of the peptide are not known. In this study the effects of feG on the adhesion of rat peritoneal leukocytes and extravasated neutrophils to several different integrin selective substrates were evaluated.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is associated with significant morbidity and mortality; however, there is no specific treatment for this disease. A novel salivary tripeptide analog, feG, reduces inflammation in several different animal models of inflammation. The aims of this study were to determine whether feG reduced the severity of AP and modifies the expression of pancreatic ICAM-1 mRNA during AP in a mouse model.

View Article and Find Full Text PDF

The recently emerged Vcsa1 gene is one member of the variable coding sequence (VCS) multigene family of Rattus norvegicus. This gene encodes the precursor prohormone SMR1 (submandibular rat-1), which on enzymatic processing gives rise to several 5 to 11 amino acid peptides that modulate a variety of physiological functions. The analgesic pentapeptide sialorphin and anti-inflammatory heptapeptide submandibular gland peptide-T (TDIFEGG) are the most intensively studied.

View Article and Find Full Text PDF

A biologically active tripeptide [phenylalanine glutamate glycine (feG)] derived from the submandibular gland has anti-inflammatory actions. We have shown that intravenous treatment with feG after spinal cord injury decreases the intraspinal infiltration of leukocytes and associated oxidative damage within 72 h after injury. The present study assessed effects of this treatment on chronic neurological outcomes after clip-compression spinal cord injury at the 12th thoracic segment.

View Article and Find Full Text PDF

Background: Tegaserod is effective in treating IBS patients with constipation, and does not alter gallbladder motility in healthy individuals or in patients with IBS. However, it is not known if tegaserod affects the biliary tract in gallstone disease, so to this end the effects of tegaserod on bile composition and hepatic secretion of Richardson ground squirrels maintained on an enriched cholesterol diet were examined.

Results: Animals were fed either a control (0.

View Article and Find Full Text PDF

Background: The D-isomeric form of the tripeptide FEG (feG) is a potent anti-inflammatory agent that suppresses type I hypersensitivity (IgE-mediated allergic) reactions in several animal species. One of feG's primary actions is to inhibit leukocyte activation resulting in loss of their adhesive and migratory properties. Since activation of neutrophils is often associated with an increase in respiratory burst with the generation of reactive oxygen species (ROS), we examined the effect of feG on the respiratory burst in neutrophils of antigen-sensitized rats.

View Article and Find Full Text PDF

The tripeptide, phenylalanine-glutamate-glycine (FEG) and its d-isomeric form phenylalanine-(D) glutamate-(D) glycine (feG), derived from submandibular gland peptide-T, significantly reduce the allergic inflammatory response and leukocyte trafficking and neutrophil migration into intestine, heart and lungs. Due to these actions, we hypothesized that feG would attenuate the early inflammatory response to spinal cord injury, reduce free radical production and improve neurological outcomes, like other leukocyte-limiting strategies we have used previously. We tested this using a clip compression model of spinal cord injury in rats.

View Article and Find Full Text PDF

Background: Excess cholesterol in bile and in blood is a major risk factor for the respective development of gallbladder disease and atherosclerosis. This lipid in excess negatively impacts the functioning of other smooth muscles, including the intestine. Serotonin is an important mediator of the contractile responses of the small intestine.

View Article and Find Full Text PDF

Interactions between the neuro-endocrine system and immune system help maintain health. One interaction involves the superior cervical ganglia (SCG), which regulate the prohormone submandibular rat 1 (SMR1) produced by the submandibular gland (SMG). A peptide derived from SMR1, feG, has anti-inflammatory activity, and modification to D-isomer feG enhances bioactivity.

View Article and Find Full Text PDF

The biological effects of cannabinoids (CB) are mediated by CB(1) and CB(2) receptors. The role of CB(2) receptors in the gastrointestinal tract is uncertain. In this study, we examined whether CB(2) receptor activation is involved in the regulation of gastrointestinal transit in rats.

View Article and Find Full Text PDF

Fas ligand (FasL) is involved in the pathogenesis of inflammatory diseases and immune privilege. We examined the expression of FasL in the enteric nervous system (ENS) in murine colitis and guinea-pig ileitis. We studied FasL immunoreactivity, functional integrity of the ENS, severity of colitis, and distribution of neutrophils in wild type and B6/gld mice that lack functional FasL.

View Article and Find Full Text PDF

The mechanism of action of feG, an anti-inflammatory peptide, was explored using data mining, molecular modeling, and enzymatic techniques. The molecular coordinates of protein kinase A (PKA) were used to create six virtual isoforms of protein kinase C (PKCalpha, betaI, betaII, delta, iota, and zeta). With in silico techniques a binding site for feG was identified on PKCbetaI that correlated significantly with a biological activity, the inhibition of intestinal anaphylaxis.

View Article and Find Full Text PDF

A D-enantiomeric analog of the submandibular gland rat-1 tripeptide FEG (Seq: NH(3)(+)-Phe-Glu-Gly-COO(-)) called feG (Seq: NH(3)(+)-D-Phe-D-Glu-Gly-COO(-)) was examined by molecular dynamics simulations in water. Previous in vacuo simulations suggested a conformation consisting predominantly of interactions between the Phe side chain and glutamyl-carboxyl group and a carboxyl/amino termini interaction. The solvated peptide was simulated using two approaches which were compared-a single 400-ns simulation and a "simulation tree.

View Article and Find Full Text PDF

Background: Neutrophils are critical in the defense against potentially harmful microorganisms, but their excessive and inappropriate activation can contribute significantly to tissue damage and a worsening pathology. Through the release of endocrine factors submandibular glands contribute to achieving a balance in neutrophil function by modulating the state of activation and migratory potential of circulating neutrophils. A putative hormonal candidate for these effects on neutrophils was identified as a heptapeptide named submandibular gland peptide T (SGP-T; sequence = TDIFEGG).

View Article and Find Full Text PDF